Vincent A. Barnett

Learn More
We have used electron paramagnetic resonance (EPR) spectroscopy to detect ATP- and calcium-induced changes in the structure of spin-labeled myosin heads in glycerinated rabbit psoas muscle fibers in key physiological states. The probe was a nitroxide iodoacetamide derivative attached selectively to myosin SH1 (Cys 707), the conventional EPR spectra of which(More)
We have measured the conventional electron paramagnetic resonance (EPR) spectrum of spin-labeled myosin filaments as a function of the nucleotide occupancy of the active site of the enzyme. The probe used was 4-(2-iodoacetamido)-2,2,6,6-tetramethylpiperidine-1-oxyl (IASL), which reacts specifically with sulfhydryl 1 of the myosin head. In the absence of(More)
Chaen et al. (1986. J. Biol. Chem. 261:13632-13636) showed that treatment of relaxed single muscle fibers with para-phenylenedimaleimide (pPDM) results in inhibition of a fiber's ability to generate active force and a diminished ATPase activity. They postulated that the inhibition of force production was due to pPDM's ability to prevent crossbridges from(More)
The acto-subfragment-1.ATP state is an important intermediate in the Ca-activated acto-S1 ATPase reaction, suggesting that the myosin.ATP crossbridge seen in muscle fibers similarly may be an important intermediate in the contractile cycle. Treatment of muscle fibers with either para-phenylenedimaleimide (pPDM) or N-phenylmaleimide (NPM) alters the myosin(More)
We have investigated the orientation and rotational mobility of spin-labeled myosin heads in muscle fibers as a function of the sarcomere length in the absence of ATP. An iodoacetamide spin label was used to label selectively two-thirds of the sulfhydryl-1 groups in glycerinated rabbit psoas muscle. Conventional electron paramagnetic resonance experiments(More)
We have used saturation transfer electron paramagnetic resonance (ST-EPR) to detect the microsecond rotational motions of spin-labeled myosin heads in bundles of skinned muscle fibers, under conditions of rigor, relaxation, and isometric contraction. Experiments were performed on fiber bundles perfused continuously with an ATP-regenerating system.(More)
We have used electron paramagnetic resonance (EPR) spectroscopy to monitor the orientation of spin labels attached specifically to a reactive sulfhydryl on the myosin heads in glycerinated rabbit psoas skeletal muscle. Previous work has shown that the paramagnetic probes are highly ordered in rigor muscle and display a random angular distribution in relaxed(More)
There have been many recent advances in improving the quality of life and prolonging life for individuals with advanced neuromuscular disease. These include the use of physical medicine techniques to balance extremity muscle strength and improve range of motion and noninvasive techniques to provide inspiratory and expiratory muscle assistance to prolong(More)