Ville Kaajakari

Learn More
Nonlinear effects in single-crystal silicon microresonators are analyzed with the focus on mechanical nonlinearities. The bulk acoustic wave (BAW) resonators are shown to have orders-of-magnitude higher energy storage capability than flexural beam resonators. The bifurcation point for the silicon BAW resonators is measured and the maximum vibration(More)
A micromechanical 13.1-MHz bulk acoustic mode silicon resonator having a high quality factor ( = 130000) and high maximum drive level ( = 0.12 mW at the hysteresis limit) is demonstrated. The prototype resonator is fabricated of single-crystal silicon by reactive ion etching of a silicon-on-insulator wafer. A demonstration oscillator based on the new(More)
Phase noise in capacitively coupled microresonator-based oscillators is investigated. A detailed analysis of noise mixing mechanisms in the resonator is presented, and the capacitive transduction is shown to be the dominant mechanism for low-frequency 1/f-noise mixing into the carrier sidebands. Thus, the capacitively coupled micromechanical resonators are(More)
Three electrostatic transduction methods are analyzed for a micromechanical, longitudinal mode, beam resonator. The conventional parallel plate transducer placed at the location of maximum displacement is compared to two solid, dielectric transducers internal to the resonator. Although the solid dielectric offers higher permittivity than the(More)
The fundamental performance limit of single-crystal silicon resonators set by device nonlinearities is characterized. Using Leeson’s model for near carrier phase noise, the nonlinearity is shown to set the scaling limit in miniaturizing oscillators. A circuit model based on discretization of distributed mass and nonlinear elasticity is introduced to(More)
A design procedure for microelectromechanical (MEMS) band-pass filters is formulated that takes into account specifications set for carrier-to-interference ratio (C/I) and insertion loss. Since suppressing intermodulation distortion to maximize C/I in MEMS filter design typically leads to increased loss and vice versa, it is necessary to aim at a feasible(More)
  • 1