Vilija Kuraitė

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
OBJECTIVE The aim of the study was to explore the effect of semi-specific antagonists and agonists of the nicotinic acetylcholine receptors on the paired-pulse facilitation and nicotinic tonic and phasic potentiation of the frog retinotectal synaptic transmission. MATERIALS AND METHODS The experiments were performed in vivo on adult frogs, Rana(More)
Introduction. We have recently demonstrated [1] that the nicotinic phasic potentiation of the retinotectal transmission enhances intrinsic activity of the tectum column (a lower activity level) reflected in the recordings of the tectal activity by a slow negative wave (sNW) and by recurrent excitatory synaptic potentials superimposed on that wave. We have(More)
It is well established that cholinergic modulation of functioning of neuronal networks is common in the central nervous system at all scales from neuronal columns to large nuclei. It is involved in various attentional, cognitive and behavioral performances. We have recently demonstrated that a frog retinotectal transmission exhibits after-burst (phasic)(More)
Neurons may release more than one classical neurotransmitter (co-mediator). It has been demonstrated in a recent study that a burst of action potentials in frog retina ganglion cells induces an after-burst increase (phasic potentiation) of the retinotectal transmission that lasts tens of seconds. This increase is mediated by presynaptic nicotinic(More)
Nicotinic acetylcholine receptors contribute to the mediation of cholinergic role in attention, vigilance, orienting and detection of behavioral significant stimuli. We have recently demonstrated an increase of the intrinsic recurrent excitatory activity of the tectum column caused by the phasic (after-burst) nicotinic potentiation of a frog single axon(More)
It was demonstrated in our previous studies of the frog retinotectal transmission that retinotectal synaptic potentials are enhanced by a factor of 1.5 due to the tonic presynaptic nicotinic potentiation, caused by the ambient level of the acetylcholine in the frog tectum. Furthermore, the results of those studies have indicated that the mechanism of the(More)
  • 1