Viktor Varga

Learn More
Septo-hippocampal GABAergic neurons immunoreactive for parvalbumin are thought to play a crucial role in the generation of hippocampal theta oscillations associated with a specific stage of memory formation. Here we use in vivo juxtacellular recording and filling in the medial septum followed by immunocytochemical identification of the recorded cells(More)
The serotonergic system plays a key role in the regulation of brain states, and many of the known features of serotonergic neurons appear to match this function. Midbrain raphe nuclei provide a diffuse projection to all regions of the forebrain, and raphe neurons exhibit a slow metronome-like activity that sets the ambient levels of serotonin across the(More)
Information processing in the hippocampus critically relies on its reciprocal interaction with the medial septum (MS). Synchronization of the septo-hippocampal system was demonstrated during both major hippocampal activity states, the regular theta rhythm and the large amplitude irregular activity. Previous experimental and modeling data suggest that the MS(More)
Cortical information processing is under state-dependent control of subcortical neuromodulatory systems. Although this modulatory effect is thought to be mediated mainly by slow nonsynaptic metabotropic receptors, other mechanisms, such as direct synaptic transmission, are possible. Yet, it is currently unknown if any such form of subcortical control(More)
Theta oscillations in the limbic system depend on the integrity of the medial septum. The different populations of medial septal neurons (cholinergic and GABAergic) are assumed to affect different aspects of theta oscillations. Using optogenetic stimulation of cholinergic neurons in ChAT-Cre mice, we investigated their effects on hippocampal local field(More)
The ventral part of the medial prefrontal cortex (mPFC) plays an important role in mood and cognition. This study examined the effect of the 5-HT in this region by measuring the electrophysiological response of ventral mPFC neurones to electrical stimulation of the dorsal and median raphe nuclei (DRN and MRN), which are the source of the 5-HT input. DRN or(More)
The zona incerta (ZI) is at the crossroad of almost all major ascending and descending fiber tracts and targets numerous brain centers from the thalamus to the spinal cord. Effective ascending drive of ZI cells has been described, but the role of descending cortical signals in patterning ZI activity is unknown. Cortical control over ZI function was examined(More)
The rapidly evolving field of digital microscopy supports the efficient exploitation of inherent information from stained glass slides to offer widespread utilization in breast histopathology. Digital image signals can be accurately measured, integrated into databases and shared through computer networks. Therefore, digital microscopy can boost(More)
The medial septum (MS) is an indispensable component of the subcortical network which synchronizes the hippocampus at theta frequency during specific stages of information processing. GABAergic neurons exhibiting highly regular firing coupled to the hippocampal theta rhythm are thought to form the core of the MS rhythm-generating network. In recent studies(More)
Cortical electrical activity during nonrapid eye movement (non-REM) sleep is dominated by slow-wave activity (SWA). At larger spatial scales (∼2-30 cm), investigated by scalp EEG recordings, SWA has been shown to propagate globally over wide cortical regions as traveling waves, which has been proposed to serve as a temporal framework for neural plasticity.(More)