Learn More
In studies designed to understand the roles of P2 nucleotide receptors in differentiation of T lymphocytes, we observed a transient and protein synthesis-independent enhancement of mRNA expression for the G protein-coupled P2Y2 receptor in mouse thymocytes after the addition of steroid hormone or T cell receptor (TCR) crosslinking by anti-TCR mAb.(More)
Double-gate transistors are considered as an attractive option to improve the performance of logic devices and overcome some of the difficulties encountered in further downscaling of bulk MOS field-effect transistors into the decananometer regime [1]. When the channel length is reduced below approximately 25nm, quantum effects such as direct source-to-drain(More)
A model capturing the effect of general strain on the electron effective masses and band-edge energies of the lowest conduction band of silicon is developed. Analytical expressions for the effective mass change induced by shear strain and valley shifts/splittings are derived using a degenerate k · p theory at the zone-boundary X point. Good agreement to(More)
A stochastic model of the resistive switching mechanism in bipolar metal-oxide-based resistive random access memory RRAM is presented. The distribution of electron occupation probabilities obtained is in good agreement with previous work. In particular, it is shown that a low occupation region is formed near the cathode. Our simulations of the temperature(More)
For analytical calculations the conduction band of Si is usually approximated by three pairs of equivalent valleys located near the X-points of the Brillouin zone. It is commonly assumed that the valley dispersion is well approximated by a non-parabolic dispersion with the transversal mass mt and the longitudinal mass ml. A constant non-parabolicity(More)
Spintronics attracts much attention because of the potential to build novel spin-based devices which are superior to nowadays charge-based microelectronic devices. Silicon, the main element of microelectronics, is promising for spin-driven applications. We investigate the surface roughness and electron-phonon limited spin relaxation in silicon films taking(More)
— Because of the easy integration with CMOS, non-volatility, reconfiguration capability, and fast-switching speed of magnetic tunnel junctions (MTJs), this work proposes and investigates stateful IMP-based logic gates and circuit architecture for future reconfigurable and nonvolatile computing systems. Stateful logic uses the memory unit (MTJ device) as the(More)
Low field mobility in doubleand single-gate structures is analyzed for (100) and (110) SOI substrate orientation. A Monte Carlo algorithm for vanishing driving fields allows the calculation of the mobility for arbitrary scattering rates and band structure without further approximations. Due to volume inversion, mobility in double-gate ultra-thin body (110)(More)
In this paper we analyze the possibility of creating a universal non-volatile memory in a near future. Unlike DRAM and flash memories a new universal memory should not require electric charge storing, but alternative principles of information storage. For the successful application a new universal memory must also exhibit low operating voltages, low power(More)