Learn More
This paper is focused on the Co-segmentation problem [1] - where the objective is to segment a similar object from a pair of images. The background in the two images may be arbitrary; therefore, simultaneous segmentation of both images must be performed with a requirement that the appearance of the two sets of foreground pixels in the respective images are(More)
Alzheimer's Disease (AD) and other neurodegenerative diseases affect over 20 million people worldwide, and this number is projected to significantly increase in the coming decades. Proposed imaging-based markers have shown steadily improving levels of sensitivity/specificity in classifying individual subjects as AD or normal. Several of these efforts have(More)
The problem of matching not just two, but m different sets of objects to each other arises in many contexts, including finding the correspondence between feature points across multiple images in computer vision. At present it is usually solved by matching the sets pairwise, in series. In contrast, we propose a new method, Permutation Synchronization, which(More)
Structural and functional brain images are playing an important role in helping us understand the changes associated with neurological disorders such as Alzheimer's disease (AD). Recent efforts have now started investigating their utility for diagnosis purposes. This line of research has shown promising results where methods from machine learning (such as(More)
We study the cosegmentation problem where the objective is to segment the same object (i.e., region) from a pair of images. The segmentation for each image can be cast using a partitioning/segmentation function with an additional constraint that seeks to make the histograms of the segmented regions (based on intensity and texture features) similar. Using(More)
Our primary interest is in generalizing the problem of Cosegmentation to a large group of images, that is, concurrent segmentation of common foreground region(s) from multiple images. We further wish for our algorithm to offer scale invariance (foregrounds may have arbitrary sizes in different images) and the running time to increase (no more than) near(More)
We recast the Cosegmentation problem using Random Walker (RW) segmentation as the core segmentation algorithm, rather than the traditional MRF approach adopted in the literature so far. Our formulation is similar to previous approaches in the sense that it also permits Cosegmentation constraints (which impose consistency between the extracted objects from(More)
We study the problem of online subspace learning in the context of sequential observations involving structured perturbations. In online subspace learning, the observations are an unknown mixture of two components presented to the model sequentially - the main effect which pertains to the subspace and a residual/error term. If no additional requirement is(More)
We develop new algorithms to analyze and exploit the joint subspace structure of a set of related images to facilitate the process of concurrent segmentation of a large set of images. Most existing approaches for this problem are either limited to extracting a single similar object across the given image set or do not scale well to a large number of images(More)
We study the problem of classifying mild Alzheimer's disease (AD) subjects from healthy individuals (controls) using multi-modal image data, to facilitate early identification of AD related pathologies. Several recent papers have demonstrated that such classification is possible with MR or PET images, using machine learning methods such as SVM and boosting.(More)