Vijaykumar Gullapalli

Learn More
Reinforcement Learning methods based on approximating dynamic programming (DP) are receiving increased attention due to their utility in forming reactive control policies for systems embedded in dynamic environments. Environments are usually modeled as controlled Markov processes, but when the environment model is not known a priori, adaptive methods are(More)
The \forward modeling" approach of Jor-dan and Rumelhart has been shown to be applicable when supervised learning methods are to be used for solving reinforcement learning tasks. Because such tasks are natural candidates for the application of reinforcement learning methods, there is a need to evaluate the relative merits of these two learning methods on(More)
A peg-in-hole insertion task is used as an example to illustrate the utility of direct associative reinforcement learning methods for learning control under real-world conditions of uncertainty and noise. Task complexity due to the use of an unchamfered hole and a clearance of less than 0:2mm is compounded by the presence of positional uncertainty of(More)