Vijaya Raghavan

Learn More
BACKGROUND Butanol is a second generation biofuel produced by Clostridium acetobutylicum through acetone-butanol-ethanol (ABE) fermentation process. Shotgun proteomics provides a direct approach to study the whole proteome of an organism in depth. This paper focuses on shotgun proteomic profiling of C. acetobutylicum from ABE fermentation using glucose and(More)
The aim of this work was to illustrate the use of photosynthetic microbes in a microbial fuel cell to produce electricity without the requirement of an external carbon source. This research here describes the use of a cyanobacterium Synechocystis PCC6803, to produce electricity without any net CO(2) production in a two-chambered MFC. Conditions for optimum(More)
Electricity production from carbon monoxide (CO) is demonstrated in a single chamber microbial fuel cell (MFC) with a CoTMPP-based air cathode. The MFC was inoculated with anaerobic sludge and continuously sparged with CO as a sole carbon source. Volumetric power output was maximized at a CO flow rate of 4.8LLR(-1)d(-1) reaching 6.4mWLR(-1). Several soluble(More)
Electricity generation in microbial fuel cells (MFCs) has been a subject of significant research efforts. MFCs employ the ability of electricigenic bacteria to oxidize organic substrates using an electrode as an electron acceptor. While MFC application for electricity production from a variety of organic sources has been demonstrated, very little research(More)
This study demonstrated electricity generation in a thermophilic microbial fuel cell (MFC) operated on synthesis gas (syngas) as the sole electron donor. At 50°C, a volumetric power output of 30-35 mWL(R)(-1) and a syngas conversion efficiency of 87-98% was achieved. The observed pathway of syngas conversion to electricity primarily consisted of a two-step(More)
Dielectric properties of supersaturated alpha-D-glucose aqueous solutions (45-56% w/w) at 2.45 GHz were investigated at temperatures ranging from 25 degrees C to 85 degrees C. Penetration depth was calculated as well. At each temperature tested, there exists a concentration range at which the dielectric constants or loss factors for supersaturated glucose(More)
Economically viable production of solvents through acetone–butanol–ethanol (ABE) fermentation requires a detailed understanding of Clostridium acetobutylicum. This study focuses on the proteomic profiling of C. acetobutylicum ATCC 824 from the stationary phase of ABE fermentation using xylose and compares with the exponential growth by shotgun proteomics(More)
OBJECTIVE To investigate a unique biomarker from the blood plasma and sputum of lung cancer patients based on native fluorescence analysis of body fluids. BACKGROUND Conventionally, biomarkers indicative of malignancy are identified by biochemical or biophysical processes. Most of the cancer biomarkers, often useful in monitoring disease progression, have(More)
Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO₂(More)
—Considering Radio Frequency (RF) heating as a viable alternative for the in-shell heating of eggs, Finite Element Modeling and simulation of RF heating of in-shell eggs at 27.12 MHz were carried out to assess the feasibility and heating uniformity of the process. According to the recommendations of USDA-FSIS for the pasteurization of eggs, egg white must(More)