Vijay Rajagopal

Learn More
Two of the major imaging modalities used to detect and monitor breast cancer are (contrast enhanced) magnetic resonance (MR) imaging and mammography. Image fusion, including accurate registration between MR images and mammograms, or between CC and MLO mammograms, is increasingly key to patient management (for example in the multidisciplinary meeting), but(More)
We have developed a biomechanical model of the breast to simulate compression during mammographic imaging. The modelling framework was applied to a set of MR images of the breasts of a volunteer. Images of the uncompressed breast were segmented into skin and pectoral muscle, from which a finite element (FE) mesh of the left breast was generated using a(More)
This paper presents a novel X-ray and MR image registration technique based on individual-specific biomechanical finite element (FE) models of the breasts. Information from 3D magnetic resonance (MR) images was registered to X-ray mammographic images using non-linear FE models subject to contact mechanics constraints to simulate the large compressive(More)
Spatio-temporal dynamics of intracellular calcium, [Ca2+]i, regulate the contractile function of cardiac muscle cells. Measuring [Ca2+]i flux is central to the study of mechanisms that underlie both normal cardiac function and calcium-dependent etiologies in heart disease. However, current imaging techniques are limited in the spatial resolution to which(More)
Breast cancer detection, diagnosis and treatment increasingly involves images of the breast taken with different degrees of breast deformation. We introduce a new biomechanical modelling framework for predicting breast deformation and thus aiding the combination of information derived from the various images. In this paper, we focus on MR images of the(More)
Diabetic cardiomyopathy is accompanied by metabolic and ultrastructural alterations, but the impact of the structural changes on metabolism itself is yet to be determined. Morphometric analysis of mitochondrial shape and spatial organization within transverse sections of cardiomyocytes from control and streptozotocin-induced type I diabetic Sprague-Dawley(More)