Vijay P. S. Rawat

Learn More
A challenge for the development of therapies selectively targeting leukemic stem cells in acute myeloid leukemia (AML) is their similarity to normal hematopoietic stem cells (HSCs). Here we demonstrate that the leukemia-propagating cell in murine CALM/AF10-positive AML differs from normal HSCs by B220 surface expression and immunoglobulin heavy chain(More)
Lymphoid enhancer-binding factor-1 (LEF1) is a key transcription factor of Wnt signaling. We recently showed that aberrant LEF1 expression induces acute myeloid leukemia (AML) in mice, and found high LEF1 expression in a subset of cytogenetically normal AML (CN-AML) patients. Whether LEF1 expression associates with clinical and molecular patient(More)
Canonical Wnt signaling is critically involved in normal hematopoietic development and the self-renewal process of hematopoietic stem cells (HSCs). Deregulation of this pathway has been linked to a large variety of cancers, including different subtypes of leukemia. Lef-1 is a major transcription factor of this pathway and plays a pivotal role in lymphoid(More)
The mechanisms underlying deregulation of HOX gene expression in AML are poorly understood. The ParaHox gene CDX2 was shown to act as positive upstream regulator of several HOX genes. In this study, constitutive expression of Cdx2 caused perturbation of leukemogenic Hox genes such as Hoxa10 and Hoxb8 in murine hematopoietic progenitors. Deletion of the(More)
The molecular characterization of leukemia has demonstrated that genetic alterations in the leukemic clone frequently fall into 2 classes, those affecting transcription factors (e.g., AML1-ETO) and mutations affecting genes involved in signal transduction (e.g., activating mutations of FLT3 and KIT). This finding has favored a model of leukemogenesis in(More)
Stem cells are defined as cells that have the ability to perpetuate themselves through self-renewal and to generate functional mature cells by differentiation. During each stage, coordinated gene expression is crucial to maintain the balance between self-renewal and differentiation. Disturbance of this accurately balanced system can lead to a variety of(More)
Molecular characterization of acute lymphoblastic leukemia (ALL) has greatly improved the ability to categorize and prognostify patients with this disease. In this study, we show that the proto-oncogene CDX2 is aberrantly expressed in the majority of cases with B-lineage ALL and T-ALL. High expression of CDX2 correlated significantly with the ALL subtype(More)
Although the transforming potential of Hox genes is known for a long time, it is not precisely understood to which extent splicing is important for the leukemogenicity of this gene family. To test this for Hoxa9, we compared the leukemogenic potential of the wild-type Hoxa9, which undergoes natural splicing, with a full-length Hoxa9 construct, which was(More)
Piwi proteins and their associated piRNAs are essential for preserving the self-renewal property of mammalian germ stem cells. Their highly conserved role in CpG island DNA methylation and chromatin modifications in germ stem cells has long been associated with transposon silencing but recent reports hint at protein coding regions being targets for(More)
Creation of fusion genes by balanced chromosomal translocations is one of the hallmarks of acute myeloid leukemia (AML) and is considered one of the key leukemogenic events in this disease. In t(12;13)(p13;q12) AML, ectopic expression of the homeobox gene CDX2 was detected in addition to expression of the ETV6-CDX2 fusion gene, generated by the chromosomal(More)