Vijay Natarajan

Learn More
We define the Morse-Smale complex of a Morse function over a 3-manifold as the overlay of the descending and ascending manifolds of all critical points. In the generic case, its 3-dimensional cells are shaped like crystals and are separated by quadrangular faces. In this paper, we give a combinatorial algorithm for constructing such complexes for piecewise(More)
Given a Morse function f over a 2-manifold with or without boundary, the Reeb graph is obtained by contracting the connected components of the level sets to points. We prove tight upper and lower bounds on the number of loops in the Reeb graph that depend on the genus, the number of boundary components, and whether or not the 2-manifold is orientable. We(More)
We introduce local and global comparison measures for a collection of k ¿ d real-valued smooth functions on a common d-dimensional Riemannian manifold. For k = d = 2 we relate the measures to the set of critical points of one function restricted to the level sets of the other. The definition of the measures extends to piecewise linear functions for which(More)
The Jacobi set of two Morse functions defined on a 2-manifold is the collection of points where the gradients of the functions align with each other or where one of the gradients vanish. It describes the relationship between functions defined on the same domain, and hence plays an important role in multi-field visualization. The Jacobi set of two piecewise(More)
This paper describes an efficient combinatorial method for simplification of topological features in a 3D scalar function. The Morse-Smale complex, which provides a succinct representation of a function's associated gradient flow field, is used to identify topological features and their significance. The simplification process, guided by the Morse-Smale(More)
The Reeb graph of a scalar function represents the evolution of the topology of its level sets. This paper describes a near-optimal output-sensitive algorithm for computing the Reeb graph of scalar functions defined over manifolds or non-manifolds in any dimension. Key to the simplicity and efficiency of the algorithm is an alternate definition of the Reeb(More)
The contour tree is a topological abstraction of a scalar field that captures evolution in level set connectivity. It is an effective representation for visual exploration and analysis of scientific data. We describe a work-efficient, output sensitive, and scalable parallel algorithm for computing the contour tree of a scalar field defined on a domain that(More)
This paper presents a new method for segmentation of molecular surfaces. Topological analysis of a scalar function defined on the surface and its associated gradient field reveals the relationship between the features of interest and critical points of the scalar function. The segmentation is obtained by associating segments with local minima/maxima.(More)