Learn More
We address the controller design and the trajectory generation for a quadrotor maneuvering in three dimensions in a tightly constrained setting typical of indoor environments. In such settings, it is necessary to allow for significant excursions of the attitude from the hover state and small angle approximations cannot be justified for the roll and pitch.(More)
The MADS-domain transcription factor APETALA1 (AP1) is a key regulator of Arabidopsis flower development. To understand the molecular mechanisms underlying AP1 function, we identified its target genes during floral initiation using a combination of gene expression profiling and genome-wide binding studies. Many of its targets encode transcriptional(More)
This paper addresses the control of a team of nonholonomic mobile robots navigating in a terrain with obstacles while maintaining a desired formation and changing formations when required, using graph theory. We model the team as a triple, ( ), consisting of a group element that describes the gross position of the lead robot, a set of shape variables that(More)
In this paper, we survey the field of robotic grasping robotic hands used in industry, they are almost exclusively used for restraint and for fixturing, and not for 4 and the work that has been done in this area over the last two decades, with a slight bias toward the development of the theoretical framework and analytical results in this a r e a . 1 I n t(More)
We propose a language, called Charon, for modular specification of interacting hybrid systems. For hierarchical description of the system architecture, Charon supports building complex agents via the operations of instantiation, hiding, and parallel composition. For hierarchical description of the behavior of atomic components, Charon supports building(More)
This paper describes the modeling language CHARON for modular design of interacting hybrid systems. The language allows specification of architectural as well as behavioral hierarchy and discrete as well as continuous activities. The modular structure of the language is not merely syntactic, but is exploited by analysis tools and is supported by a formal(More)
In this paper we investigate feedback laws used to control multiple robots moving together in a formation. We propose a method for controlling formations that uses only local sensor-based information, in a leader-follower motion. We use methods of feedback linearization to exponentially stabilize the relative distance and orientation of the follower, and(More)
In the last five years, advances in materials, electronics, sensors, and batteries have fueled a growth in the development of microunmanned aerial vehicles (MAVs) that are between 0.1 and 0.5 m in length and 0.1-0.5 kg in mass [1]. A few groups have built and analyzed MAVs in the 10-cm range [2], [3]. One of the smallest MAV is the Picoftyer with a(More)
The paper investigates the stability properties of mobile agent formations which are based on leader following. We derive nonlinear gain estimates that capture how leader behavior affects the interconnection errors observed in the formation. Leader-to-formation stability (LFS) gains quantify error amplification, relate interconnection topology to stability(More)
We study the problem of designing dynamically feasible trajectories and controllers that drive a quadrotor to a desired state in state space. We focus on the development of a family of trajectories defined as a sequence of segments, each with a controller parameterized by a goal state or region in state space. Each controller is developed from the dynamic(More)