Vijay Kumar Rana

Learn More
A tracking system has been developed to provide real-time feedback of skin dose and dose rate during interventional fluoroscopic procedures. The dose tracking system (DTS) calculates the radiation dose rate to the patient's skin using the exposure technique parameters and exposure geometry obtained from the x-ray imaging system digital network (Toshiba(More)
We have developed a dose-tracking system (DTS) to manage the risk of deterministic skin effects to the patient during fluoroscopic image-guided interventional cardiac procedures. The DTS calculates the radiation dose to the patient's skin in real-time by acquiring exposure parameters and imaging-system geometry from the digital bus on a Toshiba C-arm unit(More)
The skin dose tracking system (DTS) that we developed provides a color-coded illustration of the cumulative skin dose distribution on a 3D graphic of the patient during fluoroscopic procedures for immediate feedback to the interventionist. To improve the accuracy of dose calculation, we now have incorporated two additional important corrections (1) for the(More)
The aim of this work is to develop a method to calculate lens dose for fluoroscopically-guided neuro-interventional procedures and for CBCT scans of the head. EGSnrc Monte Carlo software is used to determine the dose to the lens of the eye for the projection geometry and exposure parameters used in these procedures. This information is provided by a digital(More)
PURPOSE Neurovascular interventional procedures using biplane fluoroscopic imaging systems can lead to increased risk of radiation-induced skin injuries. The authors developed a biplane dose tracking system (Biplane-DTS) to calculate the cumulative skin dose distribution from the frontal and lateral x-ray tubes and display it in real-time as a color-coded(More)
Novel flocculant based on amphoteric amylopectin for wastewater and industrial effluents treatment has been developed in authors' laboratory. Amphoteric flocculants have anionic and cationic moieties on the same macromolecule and is used to remove both positively and negatively charged contaminant particles in suspensions. Amylopectin based flocculants have(More)
PURPOSE Our real-time skin dose tracking system (DTS) has been upgraded to monitor dose for the micro-angiographic fluoroscope (MAF), a high-resolution, small field-of-view x-ray detector. METHODS The MAF has been mounted on a changer on a clinical C-Arm gantry so it can be used interchangeably with the standard flat-panel detector (FPD) during(More)
Vapor sensitive transducer films consisting of chitosan grafted (CNT-CS) and chitosan-co-polycaprolactone grafted (CNT-CS-PCL) multiwalled carbon nanotubes were prepared using a spray layer-by-layer technique. The synthesized materials (CNT-CS and CNT-CS-PCL) were characterized by Fourier transform infrared spectroscopy, 13C CP/MAS solid state nuclear(More)
PURPOSE To determine the appropriate calibration factor to use when calculating skin dose with our real-time dose-tracking system (DTS) during neuro-interventional fluoroscopic procedures by evaluating the difference in backscatter from different phantoms and as a function of entrance-skin field area. METHODS We developed a dose-tracking system to(More)
A biplane dose-tracking system (Biplane-DTS) that provides a real-time display of the skin-dose distribution on a 3D-patient graphic during neuro-interventional fluoroscopic procedures was developed. Biplane-DTS calculates patient skin dose using geometry and exposure information for the two gantries of the imaging system acquired from the digital system(More)