Vijay Akkineni

  • Citations Per Year
Learn More
In this paper, we investigate using specifically-designated spatiotemporal indexing techniques for mining cooccurrence patterns from spatiotemporal datasets with evolving polygon-based representations. Previously, suggested techniques for spatiotemporal pattern mining algorithms did not take spatiotemporal indexing techniques into account. We present a new(More)
Mining spatiotemporal co-occurrence patterns requires assessing the strength of co-occurrences among the instances of different feature types. Currently, a spatiotemporal version of the Jaccard measure is used for measuring the strength of spatiotemporal co-occurrences. We present an extended spatiotemporal version of the Jaccard measure (<i>J*</i>) that is(More)
Spatiotemporal co-occurrence patterns (STCOPs) represent the subsets of feature types whose instances are frequently co-occurring both in space and time. Spatiotemporal co-occurrences reflect the spatiotemporal overlap relationships among two or more spatiotemporal instances both in spatial and temporal dimensions. STCOPs can be potentially used to predict(More)
Moving object prediction and indexing have been a well studied area of research and include applications in environment monitoring, traffic prediction, advertising, and efficient routing. Spark is a cluster computing framework, which utilizes Resilient Distributed Datasets (RDD) on a cluster of several commodity machines. Spark is popularly used for(More)
The authors made a short analysis of the epidemiology, etiology, pathogenesis, clinical presentation and treatment of multiple sclerosis. There were presented facts about the influence of pregnancy over the progress of this neurological disease, and the effect of multiple sclerosis on the pregnancy and delivery development. There also were described two(More)
  • 1