Learn More
Ocular dominance plasticity (ODP) following monocular deprivation (MD) is a model of activity-dependent neural plasticity that is restricted to an early critical period regulated by maturation of inhibition. Unique developmental plasticity mechanisms may improve outcomes following early brain injury. Our objective was to determine the effects of neonatal(More)
Although there is consensus that localized Ca(2+) elevations known as Ca(2+) puffs and sparks arise from the cooperative activity of intracellular Ca(2+) channels, the precise relationship between single-channel kinetics and the collective phenomena of stochastic Ca(2+) excitability is not well understood. Here we present a formalism by which mathematical(More)
Cerebral hypoxia-ischemia results in unique patterns of injury during development owing to selective vulnerability of specific cell populations including subplate neurons. To evaluate the contribution of glutamate excitotoxicity, we studied enriched cultures of subplate neurons in comparison with cortical neurons, deriving expression profiles for glutamate(More)
Diffuse white matter injury (DWMI) caused by hypoxia is associated with permanent neurodevelopmental disabilities in preterm infants. The cellular and molecular mechanisms producing DWMI are poorly defined. Using a mouse model of neonatal hypoxia, we demonstrate a biphasic effect on oligodendrocyte development, resulting in hypomyelination. Oligodendrocyte(More)
The field of endoscopy has revolutionized the diagnosis and treatment of gastrointestinal (GI) diseases in recent years. Besides the 'traditional' endoscopic procedures (esophagogastroduodenoscopy, colonoscopy, flexible sigmoidoscopy, and endoscopic retrograde cholangiopancreatography), advances in imaging technology (endoscopic ultrasonography, wireless(More)
Ménétrier disease (MD) is a rare hypertrophic condition of the gastric mucosa. The unusual association of MD with ulcerative colitis (UC) has been reported in the literature in eight cases. Transforming growth factor-alpha (TGF-alpha) is overexpressed in UC and appears to play a role in colonic healing and repair. Overproduction of TGF-alpha in murine(More)
Cellular stress responses are frequently governed by the subcellular localization of critical effector proteins. Apoptosis-inducing Factor (AIF) or Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH), for example, can translocate from mitochondria to the nucleus, where they modulate apoptotic death pathways. Hypoxia-inducible gene domain 1A (HIGD1A) is a(More)
Thyrotropin-releasing hormone (TRH, pGlu-His-Pro-NH(2)) and the structurally related [Glu(2)]TRH (pGlu-Glu-Pro-NH(2)) are endogenous peptides with a plethora of actions in the central nervous system. Many centrally-mediated effects of TRH are shared with those of [Glu(2)]TRH, although the involvement of different receptors is presumed. The analeptic action(More)
Estrogen deprivation has a profound effect on the female brain. One of the most obvious examples of this condition is hot flushes. Although estrogens relieve these typical climacteric symptoms, many women do not want to take them owing to unwanted side-effects impacting, for example, the uterus, breast and blood. Therefore, there is a need for developing(More)
Efforts to take advantage of the beneficial activities of thyrotropin-releasing hormone (TRH) in the brain are hampered by its poor metabolic stability and lack of adequate central nervous system bioavailability. We report here novel and metabolically stable analogs that we derived from TRH by replacing its amino-terminal pyroglutamyl (pGlu) residue with(More)