Vid Agrež

  • Citations Per Year
Learn More
A simple solution for producing nanosecond laser pulses can be obtained using gain-switched fiber lasers. In this paper, we present an optimized single stage gain-switched ytterbium-doped fiber laser. Three fiber lengths were tested to show the impact of length on the laser output pulse. A pulse as short as 28 ns at 1.4 kW peak power and a maximum peak(More)
We report on a concept of a fiber MOPA based quasi-CW laser working at high modulation bandwidths up to 40 MHz capable of producing arbitrary pulse durations at arbitrary repetition rates. An output power of over 100 W was achieved and an on-off contrast of 25 dB. The laser features a dual-channel (dual-wavelength) seed source, a double stage YDF amplifier(More)
A simple solution for increasing the slope efficiency of a gain-switched fiber laser based on Yb-doped active fiber is presented. By adding a fiber amplifier stage, which recovers the unabsorbed pump light from the gain-switched oscillator, a significant increase in slope efficiency is achieved. The pulses at 1030-nm wavelength have an FWHM of 28 ns and a(More)
In this paper a near infrared gain-switched fiber laser based on oscillator stage only design with high peak power is presented. Output pulses reached 2.3 kW of peak power and duration of less than 60 ns. The dependence of the laser pulse duration on operation parameters was measured and theoretically explained. As the setup is based on flexible micro(More)
The gain-switched fiber laser presents the simplest construction among pulsed lasers in the nanosecond region and consequently is also very robust. These properties make it potentially appropriate for industrial applications, especially in some types of microprocessing. However, careful design of such lasers is important in order to reach the required pulse(More)
  • 1