Victoria R. Chapman

Learn More
Single-unit extracellular recordings of spino-parabrachial (spino-PB) neurons (n = 53) antidromically driven from the contralateral parabrachial (PB) area were performed in the lumbar cord in anesthetized rats. All the spino-PB neurons were located in the lamina I of the dorsal horn. Their axons exhibited conduction velocities between 2.8 and 27.8 m/s, in(More)
1. The aim of this review is to consider the relative roles of inhibitory and excitatory amino acid receptor-mediated events in the processes leading to pain transmission in the spinal cord. 2. Emphasis will be on the roles of the inhibitory and excitatory amino acids, GABA and glutamate, and how the relative balance between activity in these systems(More)
The antinociceptive effects of the endocannabinoids (ECs) are enhanced by inhibiting catabolic enzymes such as fatty acid amide hydrolase (FAAH). The physiological relevance of the metabolism of ECs by other pathways, such as cyclooxygenase-2 (COX2) is less clear. To address this question we compared the effects of local inhibition of FAAH versus COX2(More)
The analgesic potential of cannabinoids may be hampered by their ability to produce aversive emotion when administered systemically. We investigated the hypothesis that the midbrain periaqueductal grey (PAG) is a common substrate mediating the anti-nociceptive and potential aversive effects of cannabinoids. The rat formalin test was used to model(More)
Peripheral cannabinoid 2 receptors (CB2 receptors) modulate immune responses and attenuate nociceptive behaviour in models of acute and persistent pain. The aim of the present study was to investigate whether peripheral CB2 receptors modulate spinal processing of innocuous and noxious responses and to determine whether there are altered roles of CB2(More)
Fear-conditioned analgesia is an important survival response mediated by substrates controlling nociception and aversion. Cannabinoid(1) (CB(1)) receptors play an important role in nociception and aversion. However, their role in fear-conditioned analgesia has not been investigated. This study investigated the effects of systemic administration of the CB(1)(More)
Cannabinoid 2 (CB2) receptor mediated antinociception and increased levels of spinal CB2 receptor mRNA are reported in neuropathic Sprague-Dawley rats. The aim of this study was to provide functional evidence for a role of peripheral, vs. spinal, CB2 and cannabinoid 1 (CB1) receptors in neuropathic rats. Effects of the CB2 receptor agonist, JWH-133, and the(More)
INTRODUCTION Cannabis-based medicines have a number of therapeutic indications, including anti-inflammatory and analgesic effects. The endocannabinoid receptor system, including the cannabinoid receptor 1 (CB1) and receptor 2 (CB2) and the endocannabinoids, are implicated in a wide range of physiological and pathophysiological processes. Pre-clinical and(More)
The antinociceptive effects of Delta9-tetrahydrocannabinol (Delta9-THC) have been widely described; however, its therapeutic potential may be limited by secondary effects. We investigated whether coadministration of low doses of cannabinoids or cannabinoids and morphine produced antinociception in the absence of side-effects. Effects of preadministration(More)
Cannabinoid-based medicines have therapeutic potential for the treatment of pain. Augmentation of levels of endocannabinoids with inhibitors of fatty acid amide hydrolase (FAAH) is analgesic in models of acute and inflammatory pain states. The aim of this study was to determine whether local inhibition of FAAH alters nociceptive responses of spinal neurons(More)