Learn More
Amyloid precursor protein (APP) is endoproteolytically processed by BACE1 and gamma-secretase to release amyloid peptides (Abeta40 and 42) that aggregate to form senile plaques in the brains of patients with Alzheimer's disease (AD). The C-terminus of Abeta40/42 is generated by gamma-secretase, whose activity is dependent upon presenilin (PS 1 or 2).(More)
Transgenic mice made by crossing animals expressing mutant amyloid precursor protein (APPswe) to mutant presenilin 1 (PS1dE9) allow for incremental increases in Abeta42 production and provide a model of Alzheimer-type amyloidosis. Here, we examine cognition in 6- and 18-month old transgenic mice expressing APPswe and PS1dE9, alone and in combination.(More)
BACKGROUND The proteases (secretases) that cleave amyloid-beta (Abeta) peptide from the amyloid precursor protein (APP) have been the focus of considerable investigation in the development of treatments for Alzheimer disease. The prediction has been that reducing Abeta production in the brain, even after the onset of clinical symptoms and the development of(More)
Epidemiological studies suggest that individuals with greater education or more cognitively demanding occupations have diminished risk of developing dementia. We wanted to test whether this effect could be recapitulated in rodents using environmental enrichment, a paradigm well documented to attenuate behavioral deficits induced by various pathological(More)
Epidemiological studies of Alzheimer patients from a wide variety of ethnic and socioeconomic backgrounds have identified education and occupation as environmental factors that can affect the risk of developing disease. A model of environmental manipulation in rodents uses enriched housing to provide cognitive and social stimulation. Previous studies have(More)
Mice expressing variants of superoxide dismutase-1 (SOD1) encoding C-terminal truncation mutations linked to familial amyotrophic lateral sclerosis (FALS) have begun to define the role of misfolding and aggregation in the pathogenesis of disease. Here, we examine transgenic mice expressing SOD1-L126Z (Z = stop-truncation of last 28 amino acids), finding(More)
Familial amyotrophic lateral sclerosis (FALS) has been modeled in transgenic mice by introducing mutated versions of human genomic DNA encompassing the entire gene for Cu,Zn superoxide dismutase (SOD1). In this setting, the transgene is expressed throughout the body and results in mice that faithfully recapitulate many pathological and behavioral aspects of(More)
Previously, several studies have demonstrated changes in the levels of small heat shock proteins (sHSP) in the transgenic mouse models of familial amyotrophic lateral sclerosis (fALS) linked to mutations in Cu/Zn superoxide dismutase. Here, we compared the expression of sHSPs in transgenic mouse models of fALS, Parkinson's disease (PD), dentato-rubral(More)
Mutations in Cu/Zn superoxide dismutase 1 (SOD1) have been linked to dominantly inherited forms of amyotrophic lateral sclerosis (FALS). To test the hypothesis that the toxicity of mutant SOD1 originates in Cu(2+)-mediated formation of toxic radicals, we generated transgenic mice that express human SOD1 that encodes disease-linked mutations at two of the(More)
More than 70 different mutations in presenilin 1 (PS1) have been associated with inherited early onset Alzheimer's disease (AD). How all these different mutations cause disease has not been clearly delineated. Our laboratory has previously shown that co-expression of mutant PS1 in mice transgenic for amyloid precursor protein (APPswe) dramatically(More)