Victor de Lafuente

Learn More
When a near-threshold stimulus is presented, a sensory percept may or may not be produced. The unpredictable outcome of such perceptual judgment is believed to be determined by the activity of neurons in early sensory cortex. We analyzed the responses of neurons in primary somatosensory cortex, recorded while monkeys judged the presence or absence of(More)
When a sensory stimulus is presented, many cortical areas are activated, but how does the representation of a sensory stimulus evolve in time and across cortical areas during a perceptual judgment? We investigated this question by analyzing the responses from single neurons, recorded in several cortical areas of parietal and frontal lobes, while trained(More)
A fundamental problem in neurobiology is to understand how brain circuits represent sensory information and how such representations give rise to perception, memory and decision-making. We demonstrate that a sensory stimulus engages multiple areas of the cerebral cortex, including primary sensory, prefrontal, premotor and motor cortices. As information(More)
Quite recently, it has become possible to use signals recorded simultaneously from large numbers of cortical neurons for real-time control. Such brain machine interfaces (BMIs) have allowed animal subjects and human patients to control the position of a computer cursor or robotic limb under the guidance of visual feedback. Although impressive, such(More)
Recent studies that combined psychophysical/neurophysiological experiments [de Lafuente V, Romo R (2005) Nat Neurosci 8:1698-1703] analyzed the responses from single neurons, recorded in several cortical areas of parietal and frontal lobes, while trained monkeys reported the presence or absence of a mechanical vibration of varying amplitude applied to skin(More)
Key to understanding somatosensation is the form of how the mechanical stimuli are represented in the evoked neuronal activity of the brain. Here, we focus on studies that address the question of which components of the evoked neuronal activity in the somatosensory system represent the stimulus features. We review experiments that probe whether these(More)
This paper reviews recent progress in understanding the functional roles of inhibitory interneurons in behaving animals and how they affect information processing in cortical microcircuits. Multiple studies have shown that the morphological subtypes of inhibitory cells show distinct electrophysiological properties, as well as different molecular and(More)
In perceptual decision-making tasks the activity of neurons in frontal and posterior parietal cortices covaries more with perceptual reports than with the physical properties of stimuli. This relationship is revealed when subjects have to make behavioral choices about weak or uncertain stimuli. If knowledge about stimulus onset time is available, decision(More)
Time is a fundamental variable that organisms must quantify in order to survive. In humans, for example, the gradual development of the sense of duration and rhythm is an essential skill in many facets of social behavior such as speaking, dancing to-, listening to- or playing music, performing a wide variety of sports, and driving a car (Merchant H,(More)