Victor Zamaraev

Learn More
For a graph property X, let X n be the number of graphs with vertex set {1,. .. , n} having property X, also known as the speed of X. A property X is called factorial if X is hereditary (i.e. closed under taking induced subgraphs) and n c 1 n ≤ X n ≤ n c 2 n for some positive constants c 1 and c 2. Hereditary properties with the speed slower than factorial(More)
An induced matching M in a graph G is dominating if every edge not in M shares exactly one vertex with an edge in M. The dominating induced matching problem (also known as efficient edge domination) asks whether a graph G contains a dominating induced matching. This problem is generally NP-complete, but polynomial-time solvable for graphs with some special(More)
Independent domination is one of the rare problems for which the complexity of weighted and unweighted versions is known to be different in some classes of graphs. In the present paper, we prove two NP-hardness results, one for the weighted version and one for unweighted, which tighten the gap between them. We also prove that both versions of the problem(More)
The notion of augmenting graphs generalizes Berge's idea of augmenting chains, which was used by Edmonds in his celebrated solution of the maximum matching problem. This problem is a special case of the more general maximum independent set (MIS) problem. Recently, the augmenting graph approach has been successfully applied to solve MIS in various other(More)
An upper dominating set in a graph is a minimal (with respect to set inclusion) dominating set of maximum cardinality. The problem of finding an upper dominating set is generally NP-hard. We study the complexity of this problem in classes of graphs defined by finitely many forbidden induced subgraphs and conjecture that the problem admits a dichotomy in(More)