Victor V. Kozlov

Learn More
Nonlinear instabilities of boundary layer streaks is investigated experimentally. Extensive measurements visualizing the sinusoidal and varicose instabilities of streaky structures at the nonlinear stage of the breakdown process in boundary layer are presented. The flow behaviour in the course of spatial evolution of the streaky structures with a secondary(More)
We theoretically investigate the polarization properties of Raman amplifiers based on silicon-on-insulator waveguides, and show that it is possible to realize a waveguide Raman polarizer. The Raman polarizer is a special type of Raman amplifier with the property of producing an amplified and highly repolarized beam when it is fed by a relatively weak and(More)
We propose a method of suppressing the relative intensity noise caused by polarization-dependent gain that is inherent to Raman polarizers (RPs). This method involves bit-synchronously scrambling the state of polarization of a pulse (bit) before the pulse enters the RP. The proposed solution works for RPs operating in a depleted regime and is compatible(More)
Lossless polarizers are conservative nonlinear optical devices that transform unpolarized light into highly polarized light without polarization-dependent losses. The device proposed here consists of an up to 100-m-long segment of nonlinear highly birefringent or unidirectionally spun fiber pumped from the output end by an intense backward-propagating beam.(More)
We propose a type of lossless nonlinear polarizer, novel to our knowledge, a device that transforms any input state of polarization (SOP) of a signal beam into one and the same well-defined SOP toward the output, and perform this without any polarization-dependent losses. At the polarizer output end, the signal SOP appears to be locked to the input pump(More)
The concept of particles of light is introduced by ascribing a mechanical degree of freedom to a radiational wave packet. Evolution of the position and momentum observables of such particle in a dispersive dielectric is studied. It is shown that an initial coherent state evolves into a dispersed state which is characterized by a reduction of quantum(More)
We exactly solve the initial-boundary value problem of interaction of three waves in the limit when one of these waves is strongly damped. The solution is applied to the characterization of transient effects in Raman amplifiers, with a special emphasis on the possibility of generating Stokes pulses with peak powers that are orders of magnitude higher than(More)
Nonlinear mode coupling among two beams of different wavelength that copropagate in a bimodal highly birefringent optical fiber may lead to the effect of modal attraction. Under such circumstances, the modal distribution of light at a pump wavelength is replicated at the signal wavelength, nearly irrespective of the input mode excitation conditions of the(More)
We experimentally study Bragg-scattering four-wave mixing in a highly nonlinear fiber at telecom wavelengths using photon counters. We explore the polarization dependence of this process with a continuous wave signal in the macroscopic and attenuated regime, with a wavelength shift of 23 nm. Our measurements of mean photon numbers per second under various(More)