Learn More
In this paper we apply a finite difference lattice Boltzmann model to study the phase separation in a two-dimensional liquid-vapor system. Spurious numerical effects in macroscopic equations are discussed and an appropriate numerical scheme involving flux limiter techniques is proposed to minimize them and guarantee a better numerical stability at very low(More)
A thermal lattice Boltzmann model for a van der Waals fluid is proposed. In the continuum, the model reproduces at second order of a Chapman-Enskog expansion, the theory recently introduced by A. Onuki [Phys. Rev. Lett. 94, 054501 (2005)]. Phase separation has been studied in a system quenched by contact with external walls. Pressure waves favor the(More)
A lattice Boltzmann model with interacting particles was developed in order to simulate the magneto-rheological characteristics of magnetic fluids. In the frame of this model, 6 + 1 species of particles are allowed to move across a 2D triangular lattice. Among these species, 6 of them carry an individual magnetic dipole moment and interact themselves not(More)
A two-dimensional finite-difference lattice Boltzmann model for liquid–vapor systems is introduced and analyzed. Two different numerical schemes are used and compared in recovering equilibrium density and velocity profiles for a planar interface. We show that flux limiter techniques can be conveniently adopted to minimize spurious numerical effects and(More)
We discuss the implementation of diffuse reflection boundary conditions in a thermal lattice Boltzmann model for which the upwind finite difference scheme is used to solve the set of evolution equations recovered after discretization of the velocity space. Simulation of heat transport between two parallel walls at rest shows evidence of temperature jumps at(More)
Diffuse reflection boundary conditions are introduced in a thermal lattice Boltzmann model to allow for variable fluid density and temperature along the walls. The capability of this model to capture the main characteristics of the thermal transpiration phenomenon in a box at nonvanishing Knudsen numbers is demonstrated. The thermal creep velocity is found(More)
We use the spherical coordinate system in the momentum space and an appropriate discretization procedure to derive a hierarchy of lattice Boltzmann (LB) models with variable temperature. The separation of the integrals in the momentum space into angular and radial parts allows us to compute the moments of the equilibrium distribution function by means of(More)
Flux limiters techniques are used in a finite difference lattice Boltzmann model for two component fluid systems. The Lattice Boltzmann model was successfully applied to investigate the phase separation process, as well as the behaviour of the magnetic fluid – nonmagnetic fluid interface subjected to the action of an external magnetic field.