Victor Samokhvalov

Learn More
The ability of sodium arsenite at concentrations of 10(-2), 10(-4), and 10(-6) M to induce lipid peroxidation in Saccharomyces cerevisiae cells was studied. Arsenite at the concentrations 10(-2) and 10(-4) M enhanced lipid peroxidation and inhibited the growth of yeast cells. Enhanced lipid peroxidation likely induced oxidative damage to various cellular(More)
We investigated oxidative processes in mitochondria of Saccharomyces cerevisiae grown on ethanol in the course of chronological aging. We elaborated a model of chronological aging that avoids the influence of exhaustion of medium, as well as the accumulation of toxic metabolites during aging. A decrease in total respiration of cells and, even more, of the(More)
Glycogen and trehalose are well known to participate in many important cell functions, e.g., protection from stress factors, regulation of cell growth and division, spore formation. Since the aging is a complex process involving many aspects of cell metabolism, it was interesting to study the role of glycogen and trehalose in maintenance of viability of(More)
The role of the storage carbohydrates trehalose and glycogen in the survival of aging Saccharomyces cerevisiae cells was studied. Culture aging for one week did not reduce cell viability. During this period, the cells accumulated the storage carbohydrates and showed increased activity of the glycolytic enzymes hexokinase and phosphofructokinase. However,(More)
The ability of sodium arsenite at concentrations of 10–2, 10–4, and 10–6 M to induce lipid peroxidation in Saccharomyces cerevisiae cells was studied. Arsenite at the concentrations 10–2 and 10–4 M enhanced lipid peroxidation and inhibited the growth of yeast cells. Enhanced lipid peroxidation likely induced oxidative damage to various cellular structures,(More)
Hydrogen peroxide is known to posses a wide range of physiological effects towards functional activity of cells. We have investigated the influence of H2O2 on the activity of glycolys in the native blood cells. Adding of hydrogen peroxide up to final concentration 50 microM led to decrease of activity some glycolytic enzymes. H2O2 inhibited consumption of(More)
  • 1