Victor R. Mokler

Learn More
An in vitro selection was designed to identify RNA-cleaving ribozymes predisposed for function as a drug. The selection scheme required the catalyst to be trans-acting with phosphodiesterase activity targeting a fragment of the Kras mRNA under simulated physiological conditions. To increase stabilization against nucleases and to offer the potential for(More)
To probe the mechanism of gas-phase oligonucleotide ion fragmentation, modified oligonucleotides were studied using matrix-assisted laser desorption/ionization. The oligonucleotides were of the form 5'-TTTTXTTTTT, where X was a modified nucleotide. Modifications included substitution of hydroxy, methoxy, amino, and allyl groups at the 2'-position of the(More)
Vascular endothelial growth factor (VEGF) and its receptors Flt-1 and KDR play important roles in physiological and pathological angiogenesis. Ribozymes that target the VEGF receptor mRNAs were developed and their biological activities in cell culture and an animal model were assessed. Ribozymes targeting Flt-1 or KDR mRNA sites reduced VEGF-induced(More)
To evaluate potential improvement in tissue specific targeting and cellular uptake of therapeutic ribozymes, we have developed three new phosphoramidite reagents. These reagents can be used in automated solid-phase synthesis to produce oligonucleotide conjugates containing N-acetyl-D-galactosamine (targeting hepatocytes) and folic acid (targeting tumor).(More)
Hepatitis B virus (HBV) is responsible for > 350 million cases of chronic hepatitis B worldwide and 1.2 million deaths each year. To explore the use of ribozymes as a novel therapy for HBV infection, nuclease-resistant ribozymes that target highly conserved regions of HBV RNA were screened in cell culture. These synthetic ribozymes have the potential to(More)
A novel metal-binding site has been identified in the hammerhead ribozyme by 31P NMR. The metal-binding site is associated with the A13 phosphate in the catalytic core of the hammerhead ribozyme and is distinct from any previously identified metal-binding sites. 31P NMR spectroscopy was used to measure the metal-binding affinity for this site and leads to(More)
Although the structure of the hammerhead ribozyme is well characterized, many questions remain about its catalytic mechanism. Extensive evidence suggests the necessity of a conformational change en route to the transition state. We report a steric interference modification approach for investigating this change. By placing large 2' modifications at residues(More)
  • 1