Victor Milman

Learn More
ii Preface The objective of the workshop was to bring together experimentalists and theoreticians working in diierent branches of crystallography, namely mineralogy, solid state chemistry, materials science and solid state physics, with the aim to discuss the possibilities and limitations of modern quantum mechanical approaches with respect to the(More)
Synchrotron powder diffraction data from methylammonium tin bromide, CH(3)NH(3)SnBr(3), taken as a function of temperature, reveal the existence of a phase between 230 and 188 K crystallizing in Pmc2(1), a = 5.8941 (2), b = 8.3862 (2), c = 8.2406 (2) A. Strong ferroelectric distortions of the octahedra, associated with stereochemical activity of the Sn(More)
We measured the density of vibrational states (DOS) and the specific heat of various glassy and crystalline polymorphs of SiO2. The typical (ambient) glass shows a well-known excess of specific heat relative to the typical crystal (α-quartz). This, however, holds when comparing a lower-density glass to a higher-density crystal. For glassy and crystalline(More)
A plane wave based method for the calculation of core-level spectra is presented. We provide details of the implementation of the method in the pseudopotential density functional code CASTEP, including technical issues concerning the calculations, and discuss the applicability and accuracy of the method. A number of examples are provided for comparing the(More)
We report the synthesis, structure, and properties of novel bulk rhenium nitrides, hexagonal Re2N, and Re3N. Both phases have very high bulk moduli of >400 GPa, similar to the most incompressible binary transition-metal (TM) carbides and nitrides found to date. However, in contrast to other incompressible TM carbides and nitrides, Re3N is better placed for(More)
The vibrational dynamics of a permanently densified silica glass is compared to the one of an α-quartz polycrystal, the silica polymorph of the same density and local structure. The combined use of inelastic x-ray scattering experiments and ab initio numerical calculations provides compelling evidence of a transition, in the glass, from the isotropic(More)
  • Victor Milman
  • Acta crystallographica. Section B, Structural…
  • 2002
The details of the electronic and crystal structure, the nature of the interatomic bonding and the phase stability of three modifications of klockmannite, CuSe, are analysed using first principles modeling. The hexagonal modification of CuSe is predicted to be less stable than the orthorhombic phase under pressure. The stabilizing force for the orthorhombic(More)
First-principles calculations have been employed to examine the possible use of electron energy loss spectroscopy (EELS) as a tool for determining the presence of OH groups and hence hydrogen content in compounds. Our density functional theory (DFT) based calculations describe accurately the experimental EELS results for forsterite (Mg2SiO4), hambergite(More)