Victor Martín-Mayor

Learn More
We perform a high-statistics simulation of the three-dimensional randomly dilute Ising model on cubic lattices L3 with L< or =256. We choose a particular value of the density, x=0.8, for which the leading scaling corrections are suppressed. We determine the critical exponents, obtaining nu=0.683(3), eta=0.035(2), beta=0.3535(17), and alpha=-0.049(9), in(More)
We perform a large-scale Monte Carlo simulation of the three-dimensional Ising model on simple cubic lattices of size L 3 with L = 128 and 256. We determine the corresponding structure factor (Fourier transform of the two-point function) and compare it with several approximations and with experimental results. We also compute the turbidity as a function of(More)
We compute the dynamic structure factor for the Ising model with a purely relaxational dynamics (model A). We perform a perturbative calculation in the ǫ expansion, at two loops in the high-temperature phase and at one loop in the temperature magnetic-field plane, and a Monte Carlo simulation in the high-temperature phase. We find that the dynamic structure(More)
We show analytically that the perturbative expansion for the free energy of the zero dimensional (quenched) disordered Ising model is Borel-summable in a certain range of parameters, provided that the summation is carried out in two steps: first, in the strength of the original coupling of the Ising model and subsequently in the variance of the quenched(More)
  • 1