Victor Manuel Fernandez

Learn More
The surfaces of the infected erythrocyte (IE) and the merozoite, two developmental stages of malaria parasites, expose antigenic determinants to the host immune system. We report on surface-associated interspersed genes (surf genes), which encode a novel polymorphic protein family, SURFINs, present on both IEs and merozoites. A SURFIN expressed in 3D7(More)
Severe Plasmodium falciparum malaria is characterized by excessive sequestration of infected and uninfected erythrocytes in the microvasculature of the affected organ. Rosetting, the adhesion of P. falciparum-infected erythrocytes to uninfected erythrocytes is a virulent parasite phenotype associated with the occurrence of severe malaria. Here we report on(More)
The protozoan Plasmodium falciparum causes lethal malaria. Adhesion of erythrocytes infected with P. falciparum to vascular endothelium and to uninfected red blood cells (rosetting) may be involved in the pathogenesis of severe malaria. The binding is mediated by the antigenically variant erythrocyte-membrane-protein-1 (PfEMP-1), which is encoded by members(More)
Erythrocytes infected with mature forms of Plasmodium falciparum do not circulate but are withdrawn from the peripheral circulation; they are bound to the endothelial lining and to uninfected erythrocytes in the microvasculature. Blockage of the blood flow, hampered oxygen delivery, and severe malaria may follow if binding is excessive. The NH(2)-terminal(More)
Waves of Malarial variations Minireview schizont-infected erythrocytes and surface reactive an-tibodies form clusters or agglutinates when they are Staffan Svä rd, and Per Hagblom mixed (SICA assay). In the human malaria parasite P. Microbiology and Tumor Biology Center falciparum, antigenic variation and switching has been Karolinska Institutet and(More)
Disease severity in Plasmodium falciparum infections is a direct consequence of the parasite's efficient evasion of the defense mechanisms of the human host. To date, one parasite-derived molecule, the antigenically variant adhesin P. falciparum erythrocyte membrane protein 1 (PfEMP1), is known to be transported to the infected erythrocyte (pRBC) surface,(More)
Infections with Plasmodium falciparum during pregnancy lead to the accumulation of parasitized red blood cells (infected erythrocytes, IEs) in the placenta. IEs of P. falciparum isolates that infect the human placenta were found to bind immunoglobulin G (IgG). A strain of P. falciparum cloned for IgG binding adhered massively to placental(More)
The cerebral form of severe malaria is associated with excessive intravascular sequestration of Plasmodium falciparum-infected erythrocytes (PRBC). Retention and accumulation of PRBC may lead to occlusion of brain microvessels and direct the triggering of acute pathologic changes. Here we report that by selection, cloning, and subcloning, we have identified(More)
The var gene family of Plasmodium falciparum encodes the clonally variant adhesin PfEMP1 present on the surface of infected erythrocytes. A poorly understood mechanism of allelic exclusion controls the expression of PfEMP1. Transcription of var genes is developmentally and, most likely, epigenetically regulated. Here we have studied the transcriptional(More)
The vortex collapse-reconnection process presents behaviors commonly observed in turbulent ows: multiple spatial and temporal scales, rapid vorticity and strain-rate ampliication and dissipation through generation of small scales. In this work we reduce the computational complexity of our problem by using hierarchical methods (tree codes), introducing a(More)