Victor Kardeby

Learn More
Context-aware applications and services require ubiquitous access to context information about the users or sensors such as preferences, spatial & environmental data, available connectivity, and device capabilities. Systems for the brokering or the provisioning of context data via wireless networks do so with centralized servers or by employing(More)
Mobile telecommunication is evolving rapidly. People no longer only communicate with each other regardless of time and place, but also share other information that is important for tasks with which they are involved. In response to this growing trend the MediaSense framework addresses the intelligent delivery of any information to any host, anywhere, based(More)
Users require applications and services to be available everywhere, enabling them to focus on what is important to them. Therefore, context information (e.g., spatial data, user preferences, available connectivity and devices, etc.) has to be accessible to applications that run in end systems close to users. In response to this, we present a novel(More)
Context-aware applications and services require ubiquitous access to context information of users. The limited scalability of centralized servers used in the provisioning of context information mandates the search for scalable peer-to-peer protocols. Furthermore, unnecessary signaling must be avoided in large-scale context networks, when location-based(More)
The increasing ubiquity of context aware services and systems has been primarily underpinned by the use of centralised servers employing protocols that do no scale well for real time distribution and acquisition of neither sensor data nor dependent services. Any shift from this generic sensor framework mandated a new thinking where sensor data was capable(More)
This paper describes research issues and work-in-progress concerning ubiquitous sensing. We present scenarios where the current approaches are deficient in addressing the needs for ubiquitous sensing in services and applications on the Future Internet, involving the massive sharing of information from sensors via heterogeneous networks. We propose an(More)
There are more sensors connected to the Internet today and corporations predict that there will be billions of sensors within the decade. With billions of sensors, there is an opportunity for new behavior from applications in mobile devices based on sensor input. But such applications require a mechanism to provide a manageable subset of sensors, relevant(More)
Current context-aware applications often use the location of a user as the only indication of the current situation. These existing applications are therefore limited in their situation awareness, because of the poor indoor resolution of the location sensor and its high resource consumption. In response to these limitations we present an approach to(More)
— One of the major challenges to realize the Internet of Things is to support IP mobility for the large amount of connected entities when they move between different locations and access methods. Current solutions for mobility are host centric, requiring support from the infrastructure, or breaks backwards compatibility, which will take a long time or high(More)