Victor J. Sánchez-Morcillo

Learn More
This book is devoted to the formation and dynamics of localized structures (vortices, solitons) and of extended patterns (stripes, hexagons, tilted waves) in nonlinear optical resonators such as lasers, optical parametric oscillators, and photorefractive oscillators. Theoretical analysis is performed by deriving order parameter equations, and also through(More)
  • Series Editors, R Hull, +26 authors K Rajan
  • 2015
The Springer Series in Materials Science covers the complete spectrum of materials physics, including fundamental principles, physical properties, materials theory and design. Recognizing the increasing importance of materials science in future device technologies, the book titles in this series reflect the state-of-the-art in understanding and controlling(More)
We present the design of a structured material supporting complete absorption of sound with a broadband response and functional for any direction of incident radiation. The structure which is fabricated out of porous lamellas is arranged into a low-density crystal and backed by a reflecting support. Experimental measurements show that strong all-angle sound(More)
A comprehensive experimental, analytical and numerical study of the true focal region drift relative to the geometrical focus (focal shift effect) in acoustic focused beams and its nonlinear evolution is presented. For this aim, the concept of Fresnel number, proportional to the linear gain, is introduced as a convenient parameter for characterizing focused(More)
We show that nonmonotonic (oscillatory) decay of the boundaries of phase domains is crucial for the stability of localized structures in systems described by Swift-Hohenberg equation. The less damped (more oscillatory) are the boundaries, the larger are the existence ranges of the localized structures. For very weakly damped spatial oscillations,(More)
We present here a fast and easily realized computational approach based on the finite element methods with consistent and lumped mass matrices (CM-FEM and LM-FEM, respectively), and the Bloch's theorem, to calculate the elastic band structures of phononic crystals. Two improvements, the adjustment of the introduction of Bloch's theorem as well as weighting(More)
In this paper we develop a dynamical model of the propagating nonlinear localized excitations, supersonic kinks, in the cation layer in a silicate mica crystal. We start from purely electrostatic Coulomb interaction and add the Ziegler-Biersack-Littmark short-range repulsive potential and the periodic potential produced by other atoms of the lattice. The(More)
The acoustic properties of a three-dimensional sonic crystal made of square-rod rigid scatterers incorporating a periodic arrangement of quarter wavelength resonators are theoretically and experimentally reported in this work. The periodicity of the system produces Bragg band gaps that can be tuned in frequency by modifying the orientation of the square-rod(More)
We show theoretically that a broad area bidirectional laser with slightly different cavity losses for the two counterpropagating fields sustains cavity solitons (CSs). These are complementary; i.e., there is a bright (dark) CS in the field with larger (smaller) losses. Interestingly, the CSs can be written or erased by injecting suitable pulses into any of(More)