Learn More
Using modern colloidal chemistry, semiconductor nanocrystals (NCs), known also as NC quantum dots, can be fabricated with nearly atomic precision with a wide range of sizes and shapes. They exhibit high photoluminescence quantum yields, narrow size-controlled emission lines, and can easily be manipulated into complex two-dimensional (2D) and 3D assemblies.(More)
The development of optical gain in chemically synthesized semiconductor nanoparticles (nanocrystal quantum dots) has been intensely studied as the first step toward nanocrystal quantum dot lasers. We examined the competing dynamical processes involved in optical amplification and lasing in nanocrystal quantum dots and found that, despite a highly efficient(More)
Photoluminescence blinking--random switching between states of high (ON) and low (OFF) emissivities--is a universal property of molecular emitters found in dyes, polymers, biological molecules and artificial nanostructures such as nanocrystal quantum dots, carbon nanotubes and nanowires. For the past 15 years, colloidal nanocrystals have been used as a(More)
Nanocrystal quantum dots have favourable light-emitting properties. They show photoluminescence with high quantum yields, and their emission colours depend on the nanocrystal size--owing to the quantum-confinement effect--and are therefore tunable. However, nanocrystals are difficult to use in optical amplification and lasing. Because of an almost exact(More)
As a result of quantum-confinement effects, the emission colour of semiconductor nanocrystals can be modified dramatically by simply changing their size. Such spectral tunability, together with large photoluminescence quantum yields and high photostability, make nanocrystals attractive for use in a variety of light-emitting technologies--for example,(More)
We report the direct observation of spin-singlet dark excitons in individual single-walled carbon nanotubes through low-temperature micro-magneto-photoluminescence spectroscopy. A magnetic field (B) applied along the tube axis brightened the dark state, leading to the emergence of a new emission peak. The peak rapidly grew in intensity with increasing B at(More)
Colloidal semiconductor nanocrystals have attracted significant interest for applications in solution-processable devices such as light-emitting diodes and solar cells. However, a poor understanding of charge transport in nanocrystal assemblies, specifically the relation between electrical conductance in dark and under light illumination, hinders their(More)
Development of light-emitting diodes (LEDs) based on colloidal quantum dots is driven by attractive properties of these fluorophores such as spectrally narrow, tunable emission and facile processibility via solution-based methods. A current obstacle towards improved LED performance is an incomplete understanding of the roles of extrinsic factors, such as(More)
Nanocrystal quantum dots are attractive materials for applications as nanoscale light sources. One impediment to these applications is fluctuations of single-dot emission intensity, known as blinking. Recent progress in colloidal synthesis has produced nonblinking nanocrystals; however, the physics underlying blinking suppression remains unclear. Here we(More)
We consider a nanoscale dipolar emitter ͑quantum dot, atom, fluorescent molecule, or rare-earth ion͒ in a nanometer proximity to a flat metal surface. There is strong interaction of this emitter with unscreened metal electrons in the surface nanolayer that causes enhanced relaxation due to surface plasmon excitation and Landau damping. To describe these(More)