Learn More
We have examined the distribution of microglia in the normal adult mouse brain using immunocytochemical detection of the macrophage specific plasma membrane glycoprotein F4/80. We were interested to learn whether the distribution of microglia in the adult brain is related to regional variation in the magnitude of cell death during development and resulting(More)
Microglia, the macrophages of the central nervous system parenchyma, have in the normal healthy brain a distinct phenotype induced by molecules expressed on or secreted by adjacent neurons and astrocytes, and this phenotype is maintained in part by virtue of the blood-brain barrier's exclusion of serum components. Microglia are continually active, their(More)
Axons and their synapses distal to an injury undergo rapid Wallerian degeneration, but axons in the C57BL/WldS mouse are protected. The degenerative and protective mechanisms are unknown. We identified the protective gene, which encodes an N-terminal fragment of ubiquitination factor E4B (Ube4b) fused to nicotinamide mononucleotide adenylyltransferase(More)
Horseradish peroxidase was deposited in the optic nerve to retrogradely label and reveal the dendritic form of all classes of ganglion cell, or it was injected into the dorsal lateral geniculate nucleus to reveal only those classes projecting to the thalamus. The results were compared with those of the accompanying paper in which the ganglion cells(More)
The distribution of cones and ganglion cells was determined in whole-mounted monkey retinae. Ganglion cell density along the horizontal meridian was asymmetric, being up to three times greater in nasal retina. A similar but smaller asymmetry occurred with cones. The total number of ganglion cells varied from 1.4 to 1.8 X 10(6), agreeing well with counts of(More)
The number of ganglion cells in the retina of the postnatal rat has been examined. We estimated both the number of axons in the optic nerve and the number of cells which can be retrogradely labelled with horseradish peroxidase from injections into the brain. In the retina of the newborn rat there are at least twice as many ganglion cells as in the adult(More)
One of the histological hallmarks of early multiple sclerosis lesions is primary demyelination, with myelin destruction and relative sparing of axons. On the other hand, it is widely accepted that axonal loss occurs in, and is responsible for, the permanent disability characterizing the later chronic progressive stage of the disease. In this study, we have(More)
Wallerian degeneration of the distal stump of a severed peripheral nerve involves invasion by myelomonocytic cells, whose presence is necessary for destruction of myelin and for initiating mitosis in Schwann cells (Beuche and Friede, 1984). Degeneration of the distal ends of the axons themselves is assumed to occur by autolytic mechanisms. We describe a(More)
UNLABELLED Elimination of interstitial fluid and solutes plays a role in homeostasis in the brain, but the pathways are unclear. Previous work suggests that interstitial fluid drains along the walls of arteries. AIMS to define the pathways within the walls of capillaries and arteries for drainage of fluid and solutes out of the brain. METHODS(More)
We undertook this study to determine whether the microglia, the resident macrophages of the central nervous system, turn over in the steady-state. The turnover of brain macrophages would lend support to the "Trojan Horse" hypothesis of central nervous system infection, since one origin of replacement cells is the circulating monocyte pool. We combined the(More)