Victor H. Morgenroth

Learn More
The synthesis of the sympathetic neurotransmitter, norepinephrine, is accelerated by electrical stimulation of the guinea pig vas deferens. The molecular mechanism responsible for this enhanced formation of transmitter is unknown but has been attributed to an increase in the activity of tyrosine hydroxylase (EC; tyrosine 3-monooxygenase) during(More)
Electrical stimulation of the rat locus coeruleus causes about a 300% increase in the activity of the tyrosine hydroxylase prepared from the hippocampus on the stimulated side and assayed in the presence of subsaturating concentrations of tyrosine and pteridine cofactor. Addition of calcium or cAMP to soluble preparations of tyrosine hydroxylase isolated(More)
Electrical stimulation of the noradrenergic neurons in the locus coeruleus of the rat results in a marked increase in the tyrosine hydroxylase activity of the hippocampus on the stimulated side (Roth et al., 1975). We have developed an in vitro system to further study this interesting phenomenon. Rat hippocampal slices were stimulated in an electrical field(More)
Addition of adenosine 3':5'-monophosphate (cAMP) to high speed supernatant preparations obtained from rat brain caused a 3- to 4-fold increase in tyrosine 3-monooxygenase (tyrosine hydroxylase) activity. The tyrosine 3-monooxygenase remained in an activated state upon removal of the cAMP by passing the enzyme through a Sephadex G-25 column. Substances which(More)