Victor A. Convertino

Learn More
Compromised cardiovascular performance, occurrence of serious cardiac dysrhythmias, cardiac atrophy, orthostatic intolerance, reduced aerobic capacity, operational impacts of regular physical exercise, and space radiation are risks of space flight to the cardiovascular system identified in the 2007 NASA Human Integrated Research Program. An evidence-based(More)
We tested the hypothesis that breathing through an inspiratory threshold device (ITD) during progressive central hypovolemia would protect cerebral perfusion and attenuate the reporting of presyncopal symptoms. Eight human subjects were exposed to lower-body negative pressure (LBNP) until the presence of symptoms while breathing through either an active ITD(More)
High tolerance to progressive reductions in central blood volume has been associated with higher heart rate (HR), peripheral vascular resistance (PVR), sympathetic nerve activity (SNA), and vagally mediated cardiac baroreflex sensitivity (BRS). Using a database of 116 subjects classified as high tolerance to presyncopal-limited lower body negative pressure(More)
We measured various hemodynamic responses and muscle sympathetic nerve activity (MSNA) in human subjects during a graded lower-body negative pressure (LBNP) protocol to test the hypotheses that: (1) reduced stroke volume (SV) is linearly related to increased MSNA; and (2) the onset of symptoms of impending cardiovascular collapse is associated with(More)
Medics and first responders to emergencies are often faced with monitoring and assessing victims with very limited resources. Therefore, there is an inherent need for a real-time ambulatory monitoring capability that is portable and low power. This is particularly important for physiological monitoring of life-threatening conditions such as internal(More)
Hemorrhage remains a major cause of mortality following traumatic injury in both military and civilian settings. Lower body negative pressure (LBNP) has been used as an experimental model to study the compensatory phase of hemorrhage in conscious humans, as it elicits central hypovolemia like that induced by hemorrhage. One physiological compensatory(More)
Heart rate variability (HRV) decreases during hemorrhage, and has been proposed as a new vital sign to assess cardiovascular stability in trauma patients. The purpose of this study was to determine if any of the HRV metrics could accurately distinguish between individuals with different tolerance to simulated hemorrhage. Specifically, we hypothesized that(More)
INTRODUCTION Severe dengue hemorrhagic fever (DHF) is a viral infection that acts to increase permeability of capillaries, resulting in internal hemorrhage. Linear frequency domain Fourier spectral analysis represents the most published noninvasive tool for diagnosing and assessing health status via calculated heart rate variability (HRV). As such, HRV may(More)
The inability to compensate for acute central hypovolemia underlies the clinical development of orthostatic hypotension and instability (e.g., syncope). Although neuro-humoral control of both cardiac output and peripheral vascular resistance contributes to hemodynamic stability during orthostasis, a notion has been proposed that the failure of adequate(More)
Algorithms for real-time ambulatory monitoring of physiological signals often run on platforms which have very limited processing power and memory. Therefore, in addition to functionality, it is necessary to carefully consider real-time performance requirements. This is particularly important for physiological monitoring of life threatening conditions such(More)