Victor A. Albert

Learn More
  • PARSIMONY JACKKNIFING, OUTPERFORMS NEIGHBOR-JOINING, +4 authors Arnold G. Kluge
  • 1997
Because they are designed to produced just one tree, neighbor-joining programs can obscure ambiguities in data. Ambiguities can be uncovered by resampling, but existing neighbor-joining programs may give misleading bootstrap frequencies because they do not suppress zero-length branches and/or are sensitive to the order of terminals in the data. A new(More)
Cladistic parsimony analyses of rbcL nucleotide sequence data from 171 taxa representing nearly all tribes and subtribes of Orchidaceae are presented here. These analyses divide the family into five primary monophyletic clades: apostasioid, cypripedioid, vanilloid, orchidoid, and epidendroid orchids, arranged in that order. These clades, with the exception(More)
Vascular plants appeared ~410 million years ago, then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported. By comparing gene content in(More)
Polyploidy has long been recognized as a major force in angiosperm evolution. Recent genomic investigations not only indicate that polyploidy is ubiquitous among angiosperms, but also suggest several ancient genome-doubling events. These include ancient whole genome duplication (WGD) events in basal angiosperm lineages, as well as a proposed paleohexaploid(More)
Genomic comparisons provide evidence for ancient genome-wide duplications in a diverse array of animals and plants. We developed a birth-death model to identify evidence for genome duplication in EST data, and applied a mixture model to estimate the age distribution of paralogous pairs identified in EST sets for species representing the basal-most extant(More)
As systematists grapple with assembling the Tree of Life, recent studies have encouraged a genomic-scale approach, obtaining DNA sequence data for entire nuclear, plastid or mitochondrial genomes for a few exemplar taxa. Some have proclaimed that this comparative genomic strategy heralds the end of incongruence in phylogeny reconstruction. Although we(More)
We have used Gerbera hybrida (the cultivated ornamental, gerera) to investigate the molecular basis of flower development in Asteraceae, a family of flowering plants that have heteromorphic flowers and specialized floral organs. Flowers of the same genotype may differ in a number of parameters, including sex expression, symmetry, sympetaly and pigmentation.(More)
Phylogenetic relationships among 76 species of Oleaceae, representing all 25 recognized genera of the family, were assessed by a cladistic analysis of DNA sequences from two noncoding chloroplast loci, the rps16 intron and the trnL-F region. Consensus trees from separate and combined analyses are congruent and agree well with nonmolecular data (chromosome(More)
The carnivorous habit in flowering plants represents a grade of structural organization. Different morphological features associated with the attraction, trapping, and digestion of prey characterize a diversity of specialized forms, including the familiar pitcher and flypaper traps. Phylogenetic analysis of nucleotide sequence data from the plastic rbcL(More)
B-function MADS-box genes play crucial roles in floral development in model angiosperms. We reconstructed the structural and functional implications of B-function gene phylogeny in the earliest extant flowering plants based on analyses that include 25 new AP3 and PI sequences representing critical lineages of the basalmost angiosperms: Amborella, Nuphar(More)