Learn More
Based on evidence from recent experiments in motor learning and neurorehabilitation, we hypothesize that three desirable features for a controller for robot-aided movement training following stroke are high mechanical compliance, the ability to assist patients in completing desired movements, and the ability to provide only the minimum assistance necessary.(More)
To date, the limited degrees of freedom (DOF) of most robotic training devices hinders them from providing functional training following stroke. We developed a 6-DOF exoskeleton (“BONES”) that allows movement of the upper limb to assist in rehabilitation. The objectives of this pilot study were to evaluate the impact of training with BONES on function of(More)
BACKGROUND Robotic training can help improve function of a paretic limb following a stroke, but individuals respond differently to the training. A predictor of functional gains might improve the ability to select those individuals more likely to benefit from robot-based therapy. Studies evaluating predictors of functional improvement after a robotic(More)
BACKGROUND Standardizing scoring reduces variability and increases accuracy. A detailed scoring and training method for the Fugl-Meyer motor assessment (FMA) is described and assessed, and implications for clinical trials considered. METHODS A standardized FMA scoring approach and training materials were assembled, including a manual, scoring sheets, and(More)
Different dose-matched, upper extremity rehabilitation training techniques, including robotic and non-robotic techniques, can result in similar improvement in movement ability after stroke, suggesting they may elicit a common drive for recovery. Here we report experimental results that support the hypothesis of a common drive, and develop a computational(More)
People with stroke typically must perform much of their hand exercise at home without professional assistance as soon as two weeks after the stroke. Without feedback and encouragement, individuals often lose motivation to practice using the affected hand, and this disuse contributes to further declines in hand function. We developed the MusicGlove as a way(More)
This paper describes the design and testing of a robotic device for finger therapy after stroke: FINGER (Finger Individuating Grasp Exercise Robot). FINGER makes use of stacked single degree-of-freedom mechanisms to assist subjects in moving individual fingers in a naturalistic grasping pattern through much of their full range of motion. The device has a(More)
It is thought that therapy should be functional, be highly repetitive, and promote afferent input to best stimulate hand motor recovery after stroke, yet patients struggle to access such therapy. We developed the MusicGlove, an instrumented glove that requires the user to practice gripping-like movements and thumb-finger opposition to play a highly(More)
This paper describes the design and preliminary testing of FINGER (Finger Individuating Grasp Exercise Robot), a device for assisting in finger rehabilitation after neurologic injury. We developed FINGER to assist stroke patients in moving their fingers individually in a naturalistic curling motion while playing a game similar to Guitar Hero®a. The goal was(More)
Age-related changes in proprioception are known to affect postural stability, yet the extent to which such changes affect the finger joints is poorly understood despite the importance of finger proprioception in the control of skilled hand movement. We quantified age-related changes in finger proprioception in 37 healthy young, middle-aged, and older adults(More)