Learn More
Dicer-like (DCL) enzymes play a pivotal role in RNA silencing in plants, processing the long double-stranded RNA (dsRNA) that triggers silencing into the primary short interfering RNAs (siRNAs) that mediate it. The siRNA population can be augmented and silencing amplified via transitivity, an RNA-dependent RNA polymerase (RDR)-dependent pathway that uses(More)
Two major classes of small noncoding RNAs have emerged as important regulators of gene expression in eukaryotes, the short interfering RNAs (siRNAs) associated with RNA silencing and endogenous micro-RNAs (miRNAs) implicated in regulation of gene expression. Helper component-proteinase (HC-Pro) is a viral protein that blocks RNA silencing in plants. Here we(More)
RNA silencing is an ancient eukaryotic pathway in which double stranded RNA (dsRNA) triggers destruction of related RNAs in the cell. Early studies in plants pointed to a role for this pathway as a defense against viruses. Most known plant viruses have RNA genomes and replicate via dsRNA intermediates, thereby serving as potent inducers of RNA silencing(More)
Plant small RNAs (smRNAs), which include microRNAs (miRNAs), short interfering RNAs (siRNAs) and trans-acting siRNAs (ta-siRNAs), are emerging as significant components of epigenetic processes and of gene networks involved in development and in homeostasis. Here we present a bioinformatics resource for cereal crops, the Cereal Small RNA Database (CSRDB),(More)
RNA silencing is a highly conserved pathway in the network of interconnected defense responses that are activated during viral infection. As a counter-defense, many plant viruses encode proteins that block silencing, often also interfering with endogenous small RNA pathways. However, the mechanism of action of viral suppressors is not well understood and(More)
Dear Editor, MicroRNAs (miRNAs) are small non-coding RNAs that play a critical role in regulation of gene expression in nearly all eukaryotic organisms, including mammals. In humans, an estimated 60% of all protein-coding genes are targeted by miRNAs, affecting virtually every physiological process in the body [1]. In addition, a diverse array of human(More)
1 2 Plant viral suppressors of RNA silencing induce developmental defects similar to those 3 caused by mutations in genes involved in the microRNA (miRNA) pathway. These 4 abnormalities were originally thought to reflect a pleiotropic impact of silencing 5 suppressors on miRNA control of plant development. However, subsequent work with 6 the P1/HC-Pro(More)
  • 1