Vicente Rubio

Learn More
Plants have evolved a number of adaptive responses to cope with growth in conditions of limited phosphate (Pi) supply involving biochemical, metabolic, and developmental changes. We prepared an EMS-mutagenized M(2) population of an Arabidopsis thaliana transgenic line harboring a reporter gene specifically responsive to Pi starvation (AtIPS1::GUS), and(More)
Plants respond to different stresses by inducing or repressing transcription of partially overlapping sets of genes. In Arabidopsis, the PHR1 transcription factor (TF) has an important role in the control of phosphate (Pi) starvation stress responses. Using transcriptomic analysis of Pi starvation in phr1, and phr1 phr1-like (phl1) mutants and in wild type(More)
The chief mechanism used by bacteria for sensing their environment is based on two conserved proteins: a sensor histidine kinase (HK) and an effector response regulator (RR). The signal transduction process involves highly conserved domains of both proteins that mediate autokinase, phosphotransfer, and phosphatase activities whose output is a finely tuned(More)
Arabidopsis COP1 is a constitutive repressor of photomorphogenesis that interacts with photomorphogenesis-promoting factors such as HY5 to promote their proteasome-mediated degradation. SPA1 is a repressor of phytochrome A-mediated responses to far-red light. Here we report that COP1 acts as part of a large protein complex and interacts with SPA1 in a(More)
COP10 is a ubiquitin-conjugating enzyme variant (UEV), which is thought to act together with COP1, DET1, and the COP9 signalosome (CSN) in Arabidopsis to repress photomorphogenesis. Here, we demonstrate that COP10 interacts with ubiquitin-conjugating enzymes (E2s) in vivo, and can enhance their activity in vitro, an activity distinct from previous(More)
The increase in the ratio of root growth to shoot growth that occurs in response to phosphate (Pi) deprivation is paralleled by a decrease in cytokinin levels under the same conditions. However, the role of cytokinin in the rescue system for Pi starvation remains largely unknown. We have isolated a gene from Arabidopsis thaliana (AtIPS1) that is induced by(More)
N-Acetylglutamate kinase (NAGK) catalyses the second step in the route of arginine biosynthesis. In many organisms this enzyme is inhibited by the final product of the route, arginine, and thus plays a central regulatory role. In addition, in photosynthetic organisms NAGK is the target of the nitrogen-signalling protein PII. The 3-D structure of(More)
Urea cycle disorders (UCDs) are inborn errors of ammonia detoxification/arginine synthesis due to defects affecting the catalysts of the Krebs-Henseleit cycle (five core enzymes, one activating enzyme and one mitochondrial ornithine/citrulline antiporter) with an estimated incidence of 1:8.000. Patients present with hyperammonemia either shortly after birth(More)
Seasonal changes in day length are perceived by plant photoreceptors and transmitted to the circadian clock to modulate developmental responses such as flowering time. Blue-light-sensing cryptochromes, the E3 ubiquitin-ligase COP1, and clock-associated proteins ELF3 and GI regulate this process, although the regulatory link between them is unclear. Here we(More)
Low phosphorous availability, a common condition of many soils, is known to stimulate phosphatase activity in plants; however, the molecular details of this response remain mostly unknown. We purified and sequenced the N-terminal region of a phosphate starvation induced acid phosphatase (AtACP5) from Arabidopsis thaliana, and cloned its cDNA and the(More)