Learn More
* The analysis of metal distribution in Imperata cylindrica, a perennial grass isolated from the banks of Tinto River (Iberian Pyritic Belt), an extreme acidic environment with high content in metals, has shown a remarkable accumulation of iron. This property has been used to study iron speciation and its distribution among different tissues and structures(More)
A semiquantitative ICP-MS method suitable for evaluating metal content in plants exposed to high metal concentrations is described. The methodology which has been tested using different plant reference material is able, in only a few minutes, to obtain qualitative and quantitative information from the sample. Recoveries close to 100% were obtained for more(More)
A comparative study of the roots, rhizomes and leaves of an iron hyperaccumulator plant, Imperata cylindrica, isolated from the banks of an extreme acidic environment, using complementary techniques: Mösbauer spectroscopy (MS), X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled to energy-dispersive X-ray microanalysis (EDAX) and(More)
Río Tinto (Huelva, Spain) is located in one of the most important mining regions in the world. Its soils are characterized by their extreme acidity and elevated concentrations of heavy metals. Due to these characteristics, the Tinto ecosystem is considered unique and an ideal location to study biological adaptations to this type of habitat. Plant species(More)
Two species of perennial Phyllanthus (Euphorbiaceae) (Phyllanthus orbicularis and Phyllanthus discolor, both endemic to ultramafic areas of Cuba, and their natural hybrid, Phyllanthus xpallidus) were selected for metal localization microanalysis. Different plant tissues were analyzed by X-ray fluorescence, inductively coupled plasma-atomic emission(More)
The Tinto River (Iberian Pyritic Belt) is a unique ecosystem characterized by extreme acidity and abnormally high concentrations of heavy metals in water, sediments and alluvium, with high microbial diversity and low plant diversity. The low pH value, a direct consequence of the high amount of Fe and S derived from the bedrock, promotes the dispersion of(More)
Ferritin is of interest at the structural and functional level not only as storage for iron, a critical element, but also as a means to prevent cell damage produced by oxidative stress. The main objective of this work was to confirm by immunocytochemistry the presence and the subcellular distribution of the ferritin detected by Mösbauer spectroscopy in(More)
  • 1