Vicenta González

Learn More
In Ethiopia, malaria is caused by Plasmodium falciparum and Plasmodium vivax, and anti-malarial drug resistance is the most pressing problem confronting control of the disease. Since co-infection by both species of parasite is common and sulphadoxine-pyrimethamine (SP) has been intensively used, resistance to these drugs has appeared in both P. falciparum(More)
In Plasmodium, the high level of genetic diversity and the interactions established by co-infecting parasite populations within the same host may be a source of selection on pathogen virulence and drug resistance. As different patterns have already been described in humans and mosquitoes, parasite diversity and population structure should be studied in both(More)
The emergence of drug resistance in Plasmodium falciparum has been a major contributor to the global burden of malaria. Drug resistance complicates treatment, and it is one of the most important problems in malaria control. This study assessed the level of mutations in P. falciparum genes, pfdhfr, pfdhps, pfmdr1, and pfcrt, related to resistance to(More)
BACKGROUND In up to one third of the hospitals in some rural areas of Africa, laboratory services in malaria diagnosis are limited to microscopy by thin film, as no capability to perform thick film exists (gold standard in terms of sensitivity for malaria diagnosis). A new rapid molecular malaria diagnostic test called Loop-mediated isothermal DNA(More)
Brown rust (Puccinia melanocephala) and orange rust (P. kuehnii) cause important yield loss in global sugarcane production. Due to the difficulties of distinguishing between the two diseases to the naked eye, it is essential to use molecular techniques for an accurate rust diagnosis. A major gene, Bru1, which confers resistance to a broad spectrum of P.(More)
  • 1