Learn More
The theory on the glymphatic convection mechanism of cerebrospinal fluid holds that cardiac pulsations in part pump cerebrospinal fluid from the peri-arterial spaces through the extracellular tissue into the peri-venous spaces facilitated by aquaporin water channels. Since cardiac pulses cannot be the sole mechanism of glymphatic propulsion, we searched for(More)
Functional connectivity of the resting-state networks of the brain is thought to be mediated by very-low-frequency fluctuations (VLFFs <0.1 Hz) in neuronal activity. However, vasomotor waves and cardiorespiratory pulsations influence indirect measures of brain function, such as the functional magnetic resonance imaging blood-oxygen-level-dependent (BOLD)(More)
Chemotherapy aided by opening of the blood-brain barrier with intra-arterial infusion of hyperosmolar mannitol improves the outcome in primary central nervous system lymphoma. Proper opening of the blood-brain barrier is crucial for the treatment, yet there are no means available for its real-time monitoring. The intact blood-brain barrier maintains a(More)
Studies with magnetoencephalography (MEG) are still quite rarely combined simultaneously with methods that can provide a metabolic dimension to MEG investigations. In addition, continuous blood pressure measurements which comply with MEG compatibility requirements are lacking. For instance, by combining methods reflecting neurovascular status one could(More)
This study investigated lag structure in the resting-state fMRI by applying a novel independent component (ICA) method to magnetic resonance encephalography (MREG) data. Briefly, the spatial ICA (sICA) was used for defining the frontal and back nodes of the default mode network (DMN), and the temporal ICA (tICA), which is enabled by the high temporal(More)
  • 1