Veruska Zamborlini

Learn More
An important challenge in the Knowledge Representation area is on representing and reasoning over temporally changing information. Particularly, a number of authors have been investigating approaches to extend the expressivity beyond what is currently supported by the DL (Description Logics) based languages in order to address this issue, while maintaining(More)
Computer-Interpretable Guidelines (CIGs) are representations of Clinical Guidelines (CGs) in computer interpretable languages. CIGs have been pointed as an alternative to deal with the various limitations of paper based CGs to support healthcare activities. Although the improvements offered by existing CIG languages, the complexity of the medical domain(More)
Accounting for patients with multiple health conditions is a complex task that requires analysing potential interactions among recommendations meant to address each condition. Although some approaches have been proposed to address this issue, important features still require more investigation, such as (re)usability and scalability. To this end, this paper(More)
Representation of clinical knowledge is still an open research topic. In particular, classical languages designed for representing clinical guidelines, which were meant for producing diagnostic and treatment plans, present limitations such as for re-using, combining, and reasoning over existing knowledge. In this paper, we address such limitations by(More)
Computational technologies have been increasingly explored to make biomedical knowledge and data more accessible for human understanding, comparison, analysis and communication. In this context, ontology has been recognized in the bioinformatics literature as a suitable technique for advancing knowledge and data representations in Biomedicine. Moreover,(More)
This paper presents a method for formally representing Computer-Interpretable Guidelines to deal with multimorbidity. Although some approaches for merging guidelines exist, improvements are still required for combining several sources of information and coping with possibly conflicting pieces of evidence coming from clinical studies. Our main contribution(More)
In recent years, there has been a growing interest in the use of Foundational Ontologies, i.e., ontological theories in the philosophical sense to provide real-world semantics and principled modeling guidelines for conceptual domain modeling languages. In this paper, we demonstrate how a philosophically sound and cognitively-oriented ontological theory of(More)
This paper presents a method for formally representing Computer-Interpretable Guidelines. It allows for combining them with knowledge from several sources to better detect potential interactions within multimorbidity cases, coping with possibly conflicting pieces of evidence coming from clinical studies. The originality of our approach is on the capacity to(More)