Veronika Novakova

  • Citations Per Year
Learn More
In this work zinc azaphthalocyanines (AzaPcs) from the group of tetrapyrazinoporphyrazines and zinc azanaphthalocyanines from the group of tetra[6,7]quinoxalinoporphyrazines (TQP) with eight diethylaminoethylsulfanyl substituents were synthesized. Tertiary amines were later quaternized with ethyl iodide to obtain water-soluble photosensitizers (PSs).(More)
Novel zinc, magnesium, and metal-free octasubstituted phthalocyanine photosensitizers bearing [(triethylammonio)ethyl]sulfanyl substituents in the peripheral or nonperipheral positions were synthesized and investigated for their photophysical properties (ΦΔ value up to 0.91, λmax up to 750 nm) and photodynamic anticancer activity. The photodynamic treatment(More)
Newly synthesized zinc phthalocyanine bearing sixteen quaternized imidazolyl moieties on the periphery displays high water-solubility, lack of aggregation and high singlet oxygen quantum yield in water (ΦΔ > 0.33). The in vitro tests indicated excellent anticancer photodynamic activity (EC50 = 36.7 nM) and low dark toxicity to non-cancerous cells (TC50 =(More)
Intramolecular charge transfer (ICT) was studied on a series of magnesium, metal-free and zinc complexes of unsymmetrical tetrapyrazinoporphyrazines and tribenzopyrazinoporphyrazines bearing two dialkylamino substituents (donors) and six alkylsulfanyl or aryloxy substituents (non-donors). The dialkylamino substituents were responsible for ICT that(More)
The formation of self-assemblies between CdSe quantum dots (QDs) and Zn phthalocyanines (Pc) and azaphthalocyanines (AzaPc) bearing alkylsulfanyl substituents and the photophysical properties of these assemblies were studied using both steady-state and time-resolved luminescence/absorption spectroscopy. The formation of the self-assemblies was accompanied(More)
The intramolecular charge transfer (ICT), which is a pathway for excited state relaxation, was studied on the newly synthesized zinc(ii) complexes of tetrapyrazinoporphyrazines bearing one fixed donor (i.e., a dialkylamino substituent). The rest of the peripheral substituents on the core was designed with respect to their different electronic effects (OBu,(More)
Magnesium(II), zinc(II), and metal-free phthalocyanines (Pcs) and azaphthalocyanines (AzaPcs) containing alkylsulfanyl, aryloxy, and dialkylamino peripheral substituents have been synthesized. The complexation of magnesium(II) by metal-free Pcs and AzaPcs has been studied in detail to determine the optimal reaction conditions necessary to ensure a complete(More)
A synthesis procedure for heteroatom-substituted tetra(3,4-pyrido)porphyrazines that absorb light near 800 nm was developed. Based on the observed relationships between the structure and photophysical parameters, a novel highly photodynamically active (IC50 = 0.26 μM) compound was synthesized and biologically characterized.
Conditions for the Newman-Kwart rearrangement of phenols into thiophenols were investigated in relation to the bulkiness of substituents at the 2 and 6 positions of the starting phenol derivative with an emphasis on eliminating side reactions. Thiophenols with different 2,6-disubstitution patterns (including hydrogen, methyl, isopropyl or tert-butyl groups)(More)
Tetrapyrazinoporphyrazines (TPyzPzs) bearing one, two, four or eight 3,5-di(tert-butyl)-4-hydroxyphenol moieties were synthesized as zinc(II) complexes and metal-free derivatives. The deprotonation of the phenol using tetrabutylammonium hydroxide induced the formation of a strong donor for intramolecular charge transfer that switched OFF the red(More)