Veronica A. Alvarez

Learn More
In excitatory neurons, most glutamatergic synapses are made on the heads of dendritic spines, each of which houses the postsynaptic terminal of a single glutamatergic synapse. We review recent studies demonstrating in vivo that spines are motile and plastic structures whose morphology and lifespan are influenced, even in adult animals, by changes in sensory(More)
Mutations in the TSC1 or TSC2 tumor suppressor genes lead to tuberous sclerosis complex (TSC), a dominant hamartomatous disorder that often presents with mental retardation, epilepsy and autism. The etiology of these neurological symptoms is unclear and the function of the TSC pathway in neurons is unknown. We found that in post-mitotic, hippocampal(More)
Dopamine (DA) D2 receptors expressed in DA neurons (D2 autoreceptors) exert a negative feedback regulation that reduces DA neuron firing, DA synthesis and DA release. As D2 receptors are mostly expressed in postsynaptic neurons, pharmacological and genetic approaches have been unable to definitively address the in vivo contribution of D2 autoreceptors to(More)
micro-Opioid receptor (MOR) desensitization and endocytosis have been implicated in tolerance and dependence to opioids. The efficiency of each process is known to be agonist dependent; however, it is not known what determines the relative efficiency of various agonists at either process. In the present study, homologous MOR desensitization in locus(More)
Bacteria artificial chromosome (BAC) transgenic mice expressing the reporter protein enhanced green fluorescent protein (EGFP) under the control of the D1 and D2 dopamine receptor promoters (Drd1-EGFP and Drd2-EGFP) have been widely used to study striatal function and have contributed to our understanding of the physiological and pathological functions of(More)
OBJECTIVE Research is increasingly linking autism spectrum disorders and other neurodevelopmental disorders to synaptic abnormalities ("synaptopathies"). PSD-95 (postsynaptic density-95, DLG4) orchestrates protein-protein interactions at excitatory synapses and is a major functional bridge interconnecting a neurexinneuroligin-SHANK pathway implicated in(More)
RNA interference (RNAi), which allows selective gene silencing, has been proposed for functional genomic analysis and for the treatment of human disease. However, induction of RNAi in mammalian cells by expression of double-stranded RNA can activate innate antiviral response pathways that perturb off-target gene expression. The activation and functional(More)
NMDA-type glutamate receptors (NMDARs) play a central role in the rapid regulation of synaptic transmission, but their contribution to the long-term stabilization of glutamatergic synapses is unknown. We find that, in hippocampal pyramidal neurons in rat organotypic slices, pharmacological blockade of NMDARs does not affect synapse formation and dendritic(More)
Cocaine induces plasticity at glutamatergic synapses in the nucleus accumbens (NAc). Withdrawal was suggested to play an important role in the development of this plasticity by studies showing that some changes only appear several weeks after the final cocaine exposure. In this study, the requirement for prolonged withdrawal was evaluated by comparing the(More)
A hallmark of addiction is the loss of control over drug intake, which is seen in only a fraction of those exposed to stimulant drugs such as cocaine. The cellular mechanisms underlying vulnerability or resistance to compulsive drug use remain unknown. We found that individual variability in the development of highly motivated and perseverative behavior(More)