Learn More
—Exploratory activities seem to be intrinsically rewarding for children and crucial for their cognitive development. Can a machine be endowed with such an intrinsic motivation system? This is the question we study in this paper, presenting a number of computational systems that try to capture this drive towards novel or curious situations. After discussing(More)
This paper discusses the concept of joint attention and the different skills underlying its development. We argue that joint attention is much more than gaze following or simultaneous looking because it implies a shared intentional relation to the world. The current state-of-the-art in robotic and computational models of the different prerequisites of joint(More)
This chapter attempts to show how cognitive map models can be combined with robotic navigation strategies. A neural cognitive mapping strategy that is inspired by place cells but still abstract enough to be interpreted in a meaningful way is implemented in different experiments with both mobile robot and simulation experiments.
Giant cell arteritis (GCA) is a systemic vasculitis preferentially affecting large and medium-sized arteries. Inflammatory infiltrates in the arterial wall induce luminal occlusion with subsequent ischemia and degradation of the elastic membranes, allowing aneurysm formation. To identify pathways relevant to the disease process, differential display-PCR was(More)
This paper presents the mechanism of Intelligent Adaptive Curiosity. This is an intrinsic motivation system which pushes the robot towards situations in which it maximizes its learning progress. It makes the robot focus on situations which are neither too predictable nor too unpredictable. This mechanism is a source of autonomous mental development for the(More)
In this paper, we present a first series of experiments with prototype artificial whiskers that have been developed in our laboratory. These experiments have been inspired by neuroscience research on real rats. In spite of the enormous potential of whiskers, they have to date not been systematically investigated and exploited by roboticists. Although the(More)
− Many studies address how neurons in the barrel cortex of rats react to stimulation of the rat's whiskers. In this study we analyse how the statistical properties of whisker deflections from typical surfaces relate to the properties of neurons in the somatosensory system. We built an artificial whisker system to record realistic natural tactile data. An(More)