Verena Hess

Learn More
Acetogenic bacteria are able to use CO2 as terminal electron acceptor of an anaerobic respiration, thereby producing acetate with electrons coming from H2. Due to this feature, acetogens came into focus as platforms to produce biocommodities from waste gases such as H2 + CO2 and/or CO. A prerequisite for metabolic engineering is a detailed understanding of(More)
The anaerobic acetogenic bacterium Acetobacterium woodii has a novel Na(+)-translocating electron transport chain that couples electron transfer from reduced ferredoxin to NAD(+) with the generation of a primary electrochemical Na(+) potential across its cytoplasmic membrane. In previous assays in which Ti(3+) was used to reduce ferredoxin, Na(+) transport(More)
Eubacterium limosum KIST612 is one of the few acetogens that can produce butyrate from carbon monoxide. We have used a genome-guided analysis to delineate the path of butyrate formation, the enzymes involved, and the potential coupling to ATP synthesis. Oxidation of CO is catalyzed by the acetyl-coenzyme A (CoA) synthase/CO dehydrogenase and coupled to the(More)
UNLABELLED The methylenetetrahydrofolate reductase (MTHFR) of acetogenic bacteria catalyzes the reduction of methylene-THF, which is highly exergonic with NADH as the reductant. Therefore, the enzyme was suggested to be involved in energy conservation by reducing ferredoxin via electron bifurcation, followed by Na(+) translocation by the Rnf complex. The(More)
A ferredoxin:NAD(+) oxidoreductase was recently discovered as a redox-driven ion pump in the anaerobic, acetogenic bacterium Acetobacterium woodii. The enzyme is assumed to be encoded by the rnf genes. Since these genes are present in the genomes of many bacteria, we tested for ferredoxin:NAD(+) oxidoreductase activity in cytoplasmic membranes from several(More)
The anaerobic acetogenic bacterium Acetobacterium woodii couples the reduction of caffeate with electrons derived from hydrogen to the synthesis of ATP by a chemiosmotic mechanism using sodium ions as coupling ions, but the enzymes involved remain to be established. Previously, the electron transfer flavoproteins EtfA and EtfB were found to be involved in(More)
The anaerobic acetogenic bacterium Acetobacterium woodii couples reduction of caffeate with electrons derived from molecular hydrogen to the synthesis of ATP by a chemiosmotic mechanism with sodium ions as coupling ions. Caffeate is activated to caffeyl coenzyme A (caffeyl-CoA) prior to its reduction, and the caffeate reduction operon encodes an(More)
The specific plasminogen activator inhibitor 2 (PAI-2) from human placenta was used to compare the kinetics of inactivation of recombinant urokinase and urokinase from human urine. The inactivation of the enzymes proceeded with identical second order rate constants. The result is considered a further indication of corresponding 3-dimensional structures of(More)
Rats were treated for two weeks with haloperidol alone or with additional test drugs and the D2 receptor density in the striatum was investigated after a drug-free period of five days. The D2 receptor system as analysed by [3H]-spiperone binding was best characterized by a model with two binding sites of different affinity and the following constants:(More)