Vered Lavie

Learn More
Failure of axons of the central nervous system in adult mammals to regenerate spontaneously after injury is attributed in part to inhibitory molecules associated with oligodendrocytes. Regeneration of central nervous system axons in fish is correlated with the presence of a transglutaminase. This enzyme dimerizes interleukin-2, and the product is cytotoxic(More)
Regeneration of fish optic nerve (representing regenerative central nervous system) was accompanied by increased activity of regeneration-triggering factors produced by nonneuronal cells. A graft of regenerating fish optic nerve, or a "wrap-around" implant containing medium conditioned by it, induced a response associated with regeneration in injured optic(More)
Spontaneous growth of axons after injury is extremely limited in the mammalian central nervous system (CNS). It is now clear, however, that injured CNS axons can be induced to elongate when provided with a suitable environment. Thus injured CNS axons can elongate, but they do not do so unless their environment is altered. We now show apparent regenerative(More)
The results of this study attribute to tumor necrosis factor (TNF) a role in regeneration of injured mammalian central nervous system (CNS) axons which grow into their own degenerating environment. This is the first time that a specific factor involved in axonal regeneration has been identified. The axonal environment is occupied mostly by glia cells, i.e.,(More)
Injury to the mammalian central nervous system results in loss of function because of its inability to regenerate. It has been postulated that some axons in the mammalian central nervous system have the ability to regenerate but fail to do so because of the inhospitable nature of surrounding glial cells. For example, mature oligodendrocytes were shown to(More)
The central nervous systems of mammals and fish differ significantly in their ability to regenerate. Central nervous system axons in the fish readily regenerate after injury, while in mammals they begin to elongate but their growth is aborted at the site of injury, an area previously shown to contain no glial cells. In the present study we compared the(More)
We have recently shown that cell bodies of an injured optic nerve of adult rabbit can be induced to express regeneration-associated response by external signals derived from nonneuronal cells of regenerating nerves of lower vertebrates. In this study it is shown that even substances derived from a nonregenerating mammalian system also can trigger such a(More)
In this study we present a method to achieve a complete transection of optic nerve axons in adult rat, while preserving the vasculature and retaining the continuity of the meninges. Under deep anesthesia, the optic nerve of adult rat is exposed. Using specially designed instruments built from disposable glass microsampling pipettes, a small opening is(More)
This study demonstrates the earliest reported effects of GM1 treatment on crush-injured axons of the mammalian optic nerve. GM1, administered intraperitoneally immediately after injury, was found to reduce the injury-induced metabolic deficit in nerve activity within 2 hr of injury, as measured by changes in the nicotine-amine adenine dinucleotide redox(More)
Adult rabbit retina can express regeneration-associated characteristics after optic nerve injury, provided it is supplied with appropriate diffusible substances originating from media conditioned by regenerating fish optic nerves or by optic nerves of a newborn rabbit [Hadani et al., Proc. Natl. Acad. Sci. U.S.A., 81 (1984) 7965; Schwartz et al., Science,(More)