Learn More
To understand how organisms adapt to novel habitats, which involves both demographic and selective events, we require knowledge of the evolutionary history of populations and also selected alleles. There are still few cases in which the precise mutations (and hence, defined alleles) that contribute to adaptive change have been identified in nature; one(More)
Identifying adaptively important loci in recently bottlenecked populations - be it natural selection acting on a population following the colonization of novel habitats in the wild, or artificial selection during the domestication of a breed - remains a major challenge. Here we report the results of a simulation study examining the performance of available(More)
Animal color patterns can affect fitness in the wild; however, little is known about the mechanisms that control their formation and subsequent evolution. We took advantage of two locally camouflaged populations of Peromyscus mice to show that the negative regulator of adult pigmentation, Agouti, also plays a key developmental role in color pattern(More)
This note describes a rapid and inexpensive Restriction Fragment Length Polymorphism technique to discriminate all species of Atherina (Pisces: Atherinidae) of the north-eastern Atlantic and the Mediterranean. This technique is based on digestion of a fragment of the 12S ribosomal RNA (12SrRNA) gene region of mitochondrial DNA with restriction enzymes that(More)
Identifying adaptively important loci in recently bottlenecked populations – be it natural selection acting on a population following the colonization of novel habitats in the wild, or artificial selection during the domestication of a breed – remains a major challenge. Here we report the results of a simulation study examining the performance of available(More)
  • 1