Learn More
Human melanoma mortality is associated with the growth of metastasis in selected organs including the lungs, liver, and brain. In this study, we examined the consequences of overexpression of pigment epithelium-derived factor (PEDF), a neurotrophic factor and potent angiogenesis inhibitor, on both melanoma primary tumor growth and metastasis development.(More)
Increasing evidences point to G protein-coupled receptor kinases (GRKs), a subfamily of protein kinase A/G/C-like kinases, as relevant players in cancer progression, in a cell-type and tumor-specific way. Alterations in the expression and/or activity of particular GRKs have been identified in several types of tumors, and demonstrated to modulate the(More)
G protein-coupled receptor kinase 2 (GRK2) is a key modulator of G protein-coupled receptors and other plasma membrane receptors stimulated by chemotactic messengers. On top of that, GRK2 has been reported to interact with a variety of signal transduction proteins related to cell migration such as MEK, Akt, PI3Kgamma or GIT. Interestingly, the levels of(More)
Tumor vessel dysfunction is a pivotal event in cancer progression. Using an in vivo neovascularization model, we identified G protein-coupled receptor kinase 2 (GRK2) as a key angiogenesis regulator. An impaired angiogenic response involving immature vessels was observed in mice hemizygous for Grk2 or in animals with endothelium-specific Grk2 silencing. ECs(More)
Plasma cells (PC) are B-lymphocytes terminally differentiated in a postmitotic state, with the unique purpose of manufacturing and exporting Igs. Despite the importance of this process in the survival of vertebrates, no studies have been made to understand the molecular events that regulate Ig exocytosis by PC. The present study explores the possible(More)
Animals treated with formalinized Candida albicans manifest depressed cellular immune activity. Splenocytes from mice treated with as little as 14 micrograms of this material exhibited significantly reduced responses to the T cell-dependent mitogens phytohemagglutinin and concanavalin A. On the other hand, the B lymphocyte-dependent response to bacterial(More)
Downregulation of G protein-coupled receptor kinase 2 (GRK2) in endothelial cells has recently been identified as a relevant event in the tumoral angiogenic switch. Based on the effects of altering GRK2 dosage in cell and animal models, this kinase appears to act as a hub in key signaling pathways involved in vascular stabilization and remodeling.(More)
In addition to oncogenic drivers, signaling nodes can critically modulate cancer-related cellular networks to strength tumor hallmarks. We identify G-protein-coupled receptor kinase 2 (GRK2) as a relevant player in breast cancer. GRK2 is up-regulated in breast cancer cell lines, in spontaneous tumors in mice, and in a proportion of invasive ductal carcinoma(More)
Cell cycle progression requires changes in the activity or levels of a variety of key signaling proteins. G protein-coupled receptor kinase 2 (GRK2) plays a central role in G protein-coupled receptor regulation. Recent research is uncovering its involvement in additional cellular functions, but the potential role of GRK2 in the cell cycle has not been(More)