Learn More
Calcium and voltage-activated potassium (BK) channels are key actors in cell physiology, both in neuronal and non-neuronal cells and tissues. Through negative feedback between intracellular Ca (2+) and membrane voltage, BK channels provide a damping mechanism for excitatory signals. Molecular modulation of these channels by alternative splicing, auxiliary(More)
Recent molecular-dynamics simulations have suggested that the arginine-rich HIV Tat peptides translocate by destabilizing and inducing transient pores in phospholipid bilayers. In this pathway for peptide translocation, Arg residues play a fundamental role not only in the binding of the peptide to the surface of the membrane, but also in the destabilization(More)
Calcium-activated potassium currents were studied in dissociated smooth muscle cells from human saphenous vein (HSV) using the patch-clamp technique in the whole-cell configuration. The average measured resting membrane potential (Vm) was -41+/-2 mV (n=39), when the cells were dialysed with an intracellular pipette solution (IPS) containing 0.1 mM(More)
Hemodynamic care during postoperative management of myocardial revascularization should include vasorelaxing drugs to insure adequate graft and coronary flow, and stimulation of stroke volume to maintain vascular perfusion pressure. We tested the cardiac (inotropic and lusitropic) and vascular (relaxant) effects of diltiazem (0.1 nM to 0.1 mM), dobutamine(More)
The mechanism whereby extracellular Ca(2+) exerts the endothelium-dependent control of vascular tone is still unclear. In this study, we assessed whether cardiac microvascular endothelial cells (CMEC) express a functional extracellular Ca(2+)-sensing receptor (CaSR) using a variety of techniques. CaSR mRNA was detected using RT-PCR, and CaSR protein was(More)
OBJECTIVE To identify K+ channels of smooth muscle of human umbilical artery using the patch-clamp technique and to study their effect on resting tone of umbilical artery rings. METHODS Whole-cell and single-channel patch-clamp recordings in enzymatically isolated smooth muscle cells were made. Measurements of developed isometric force were performed on(More)
The aim of our work was to investigate the presence of non-selective cation channels (NSCC) in freshly isolated smooth muscle cells from the human umbilical artery (HUA), one of the vessels involved in fetal-placental circulation. We studied the electrophysiological properties of NSCC using the patch-clamp technique in whole-cell configuration, and their(More)
Adaptation, i.e., the decrease with time in sensory units' afferent discharge to a constant stimulus, appears to be a common feature of the receptors belonging to acoustico-lateralis system: However, the mechanisms underlying this process are still a matter of debate. The present experiments demonstrate that sensory adaptation to both mechanical and(More)
The effects of capsaicin, the active principle of hot pepper genus Capsicum, were studied on voltage-activated, tetrodotoxin-sensitive Na+ currents in isolated rat atrial cells using the patch clamp technique in the whole-cell configuration. 0.4 and 4 microM of capsaicin produced a significant tonic block on voltage-activated Na+ current (I(Na)) evoked by a(More)
The electrophysiological and pharmacological properties of Ca(2+) current (I(Ca)) were determined by the whole-cell configuration of the patch-clamp technique in smooth muscle cells from human umbilical artery. Using 5 mM extracellular Ca(2+), depolarizing step pulses from -60 to 50 mV from a holding membrane potential of -80 mV evoked an I(Ca) which(More)