Learn More
Establishing the capacity region of a Gaussian interference network is an open problem in information theory. Recent progress on this problem has led to the characterization of the capacity region of a general two-user Gaussian interference channel within one bit. In this paper, we develop new, improved outer bounds on the capacity region. Using these(More)
We consider a distributed multi-agent network system where the goal is to minimize a sum of convex objective functions of the agents subject to a common convex constraint set. Each agent maintains an iterate sequence and communicates the iterates to its neighbors. Then, each agent combines weighted averages of the received iterates with its own iterate, and(More)
One of the main requirements of cognitive radio systems is the ability to reliably detect the presence of licensed primary transmissions. Previous works on the problem of detection for cognitive radio have suggested the necessity of user cooperation in order to be able to detect at the low signal-to-noise ratios experienced in practical situations. We(More)
— The problem of sequential testing of multiple hypotheses is considered, and two candidate sequential test procedures are studied. Both tests are multihypothesis versions of the binary sequential probability ratio test (SPRT), and are referred to as MSPRT's. The first test is motivated by Bayesian optimality arguments, while the second corresponds to a(More)
Resource allocation is investigated for fading relay channels under separate power constraints at the source and relay nodes. As a basic information-theoretic model for fading relay channels, the parallel relay channel is first studied, which consists of multiple independent three-terminal relay channels as subchannels. Lower and upper bounds on the(More)
The capacity regions are investigated for two relay broadcast channels (RBCs), where relay links are incorporated into two-user broadcast channels to support user cooperation. In the first channel, the partially cooperative RBC, only one user in the system acts as a relay. An achievable rate region is derived based on the relay using the decode-and-forward(More)
The sequential testing of more than two hypotheses has important applications in direct-sequence spread spectrum signal acquisition, multiple-resolution-element radar, and other areas. A useful sequential test which we term the MSPRT is studied in this paper. The test is shown to be a generalization of the Sequential Probability Ratio Test. Under Bayesian(More)
—In this paper, we study a binary decentralized detection problem in which a set of sensor nodes provides partial information about the state of nature to a fusion center. Sensor nodes have access to conditionally independent and identically distributed observations, given the state of nature, and transmit their data over a wireless channel. Upon reception(More)
—A decentralized formulation of the quickest change detection problem is studied, where the distributions of the observations at all of the sensors in the system change at the time of disruption, and the sensors communicate with a common fusion center. A Bayesian setting is considered in which a priori knowledge of the change time distribution is available.(More)
A decentralized sequential detection problem is considered in which each one of a set of sensors receives a sequence of observations about the hypothesis. Each sensor sends a sequence of summary messages to the fusion center where a sequential test is carried out to determine the true hypothesis. A Bayesian framework for this problem is introduced, and for(More)